

Auswertungs-Bericht

Laborvergleichsuntersuchung

DLA ptSU03 (2021)

Nahrungsergänzungsmittel II:

B, Ca, Cr, Cu, Fe, K, Mg, Mn, Mo, P, Se, Zn

in Tabletten- / Kapselpulver

DLA - Proficiency Tests GmbH Hauptstr. 80 23845 Oering/Germany

proficiency-testing@dla-lvu.de www.dla-lvu.de

Koordinator der LVU: Dr. Matthias Besler-Scharf

Allgemeine Informationen zur Eignungsprüfung (EP) General Information on the proficiency test (PT)

EP-Anbieter PT-Provider	DLA - Proficiency Tests GmbH Hauptstr. 80, 23845 Oering, Germany Geschäftsführer/CEO: Dr. Matthias Besler-Scharf Stellv. Leitung/Deputy Lead: Alexandra Scharf MSc. Tel. ++49-(0)4532-9183358 Mob. ++49(0)171-1954375 Fax. ++49(0)4102-9944976 eMail. proficiency-testing@dla-lvu.de
EP-Nummer PT-Number	DLA ptSU03 (2021)
EP-Koordinator PT-Coordinator	Dr. Matthias Besler-Scharf
Status des EP-Bericht Status of PT-Report	Abschlussbericht / Final report (9. Dezember 2021) Gültig ist die jeweils letzte Version/Korrektur des Berichts. Sie ersetzt alle vorangegangenen Versionen. Only the latest version/correction of the report is valid. It replaces all preceding versions.
EP-Bericht Freigabe PT-Report Authorization	Dr. Matthias Besler-Scharf (Technischer Leiter / Technical Manager) - gezeichnet / signed M. Besler-Scharf Alexandra Scharf MSc. (QM-Beauftragte / Quality Manager) - gezeichnet / signed A. Scharf Datum / Date: 9. Dezember 2021
Unteraufträge Subcontractors	Im Rahmen dieser Eignungsprüfung wurden nachstehende Leistungen im Unterauftrag vergeben: Homogenitätsprüfung der EP-Parameter As part of the present proficency test the following services were subcontracted: Homogeneity tests of PT-parameter(s)
Vertraulichkeit Confidentiality	Die Teilnehmerergebnisse sind im EP-Bericht in anonymisierter Form mit Auswertenummern benannt. Daten einzelner Teilnehmer werden ausschließlich nach vorheriger Zustimmung des Teilnehmers an Dritte weitergegeben. Participant result are named anonymously with evaluation numbers in the PT report. Data of individual participants will be passed on to third parties only with prior consent of the participant.

Inhalt

1.	Einleitung	4
2.	Durchführung	4
	2.1 Untersuchungsmaterial	4
	2.1.1 Homogenität	6
	2.1.2 Stabilität	
	2.2 Probenversand und Informationen zur Untersuchung	7
	2.3 Ergebnisübermittlung	
3.	Auswertung	8
	3.1 Konsenswert der Teilnehmer (zugewiesener Wert)	
	3.2 Robuste Standardabweichung	
	3.3 Wiederholstandardabweichung	
	3.4 Vergleichsstandardabweichung	
	3.5 Ausschluss von Ergebnissen und Ausreißern	
	3.6 Zielstandardabweichung (für die Eignungsbeurteilung)	
	3.6.1 Allgemeines Modell nach Horwitz	
	3.6.2 Auswertung eines Versuchs zur Präzision	
	3.6.3 Werte aus Erkenntnissen	
	3.7 z-Score	14
	3.7.1 Warn- und Eingriffssignale	
	3.8 z'-Score	
	3.9 Variationskoeffizient (VKR)	15
	3.10 Quotient S*/opt	
	3.11 Standardunsicherheit und Rückführbarkeit	
4.	Ergebnisse	17
	4.1 B - Bor in mg/100g	
	4.2 Ca - Calcium in mg/100g	
	4.3 Cr - Chrom in µg/100g	
	4.4 Cu - Kupfer in mg/100g	
	4.5 Fe - Eisen in mg/100g	
	4.6 K - Kalium in mg/100g	
	4.7 Mg - Magnesium in mg/100g	
	4.8 Mn - Mangan in mg/100g	
	4.9 Mo - Molybdän in µg/100g	
	4.10 P - Phosphor in mg/100g	
	4.11 Se - Selen in µg/100g	
	4.12 Zn - Zink in mg/100g	
	4.13 z-Scores der Teilnehmer: Übersichtstabelle	
5.		
	5.1 Angaben der Teilnehmer	
	5.1.1 Primärdaten	
	5.1.2 Analytische Methoden	
	5.2 Homogenität	
	5.2.1 Homogenitätsuntersuchung der abgefüllten LVU-Proben	
	5.2.2 Trendlinienfunktion der Teilnehmerergebnisse	
	5.3 Kerndichte-Verteilungen der Ergebnisse	
	5.4 Informationen zur Eignungsprüfung (EP)	
6.	Verzeichnis der Teilnehmer in alphabetischer Reihenfolge	
	Verzeichnis relevanter Literatur	

1. Einleitung

Die Teilnahme an Laborvergleichsuntersuchungen (LVU) bzw. Eignungsprüfungen (EP) ist ein unverzichtbares Element für das Qualitäts-Management-System eines jeden, mit der Untersuchung von Lebensmitteln, Futtermitteln, kosmetischen Mitteln und Bedarfsgegenständen befassten Labors. Die Durchführung von Laborvergleichsuntersuchungen ermöglicht den teilnehmenden Laboren die eigene analytische Kompetenz unter realen Bedingungen nachzuweisen. Gleichzeitig erhalten sie wertvolle Daten für die erforderliche Verifizierung oder Validierung der durchgeführten Untersuchungsmethode [1, 5].

Das Ziel von DLA ist es, LVU für ausgesuchte Parameter in praxisrelevanten Konzentrationen und Matrices anzubieten.

Durchführung und Auswertung der vorliegenden Laborvergleichsuntersuchung erfolgten nach den technischen Anforderungen der DIN EN ISO/IEC 17043 (2010) und DIN ISO 13528-2009 bzw. ISO 13528-2015 [2, 3].

2. Durchführung

2.1 Untersuchungsmaterial

Bei dem Untersuchungsmaterial handelt es sich um eine Mischung von drei handelsüblichen Nahrungsergänzungsmitteln, zwei Multi-Vitamin- und Multi-Mineralstoff-Produkte und ein Produkt mit Bor-Verbindungen, sowie Maltodextrin als Füllstoff/Trägerstoff von Europäischen Anbietern.

Die Rohstoffe wurden zerkleinert bzw. die Kapselhüllen entfernt, mittels Zentrifugalmühle gesiebt (mesh < 500 μ m), zusammen gegeben und homogenisiert.

Anschließend wurden die Proben zu Portionen von ca. 10 g in metallisierte PET-Folienbeutel abgefüllt und chronologisch nummeriert.

Die Zusammensetzung (Verzeichnis der Zutaten) und die auf Basis der Herstellerangaben berechneten Gehalte an Mineralstoffen sind in Tabelle 1 bzw. 2 angegeben.

Multi-Mineralstoff Pulver

Zutaten (1. Nahrungsergänzungsmittel, Tabletten):

Calciumcarbonat, Mikrokristalline Cellulose, Ascorbinsäure, Magensiumoxid, Calciumphospat, Kaliumchlorid, Natrium-Croscarmellose, Nitcotinamid, Eisenfumarat, dalpha Tocopherolacetat, Trennmittel: Magnesiumsalze von Speisefettsäuren, Siliciumdioxid, Zinkoxid, Calciumpantothenat, Coating: Hypromellose und Polyvinylalkohol, Mangansulfat, Riboflavin, Pyridoxin-HCl, Thiamin-Mononitrat, Kupfersulfat, Vitamin-A-Acetat, Folsäure, Kaliumiodid, Natriumtetraborat, Natriumselenit, Biotin, Vitamin K1, Natriummolybdat, Chromchlorid, Cholecalciferol, Cyanocobalamin.

<u>Zutaten</u> (2. Nahrungsergänzungsmittel, Kapselpulver ohne Kapselhülle): Dicalciumphosphat, Magnesiumoxid, Vitamin C, Kaliumchlorid, Niacin, Trennmittel Magnesiumstearat, Vitamin-E-Acetat, Calcium-D-Pantothenat, Eisensulfat, Zinkoxid, Vitamin-B6-Hydrochlorid, Kupfersulfat, Vitamin B2, Vitamin-B1-Mononitrat, Vitamin-A-Acetat, Folsäure, Biotin, Kaliumjodid, Chrom-III-chlorid, Natriummolybdat, Natriumselenit, Vitamin K1, Vitamin D3, Vitamin B12.

<u>Zutaten</u> (3. Nahrungsergänzungsmittel, Kapselpulver ohne Kapselhülle): Bor-Citrat, Bor-Aspartat, Bor-Gycinat, Mikrokristalline Cellulose, Riboflavin.

weitere Zutaten:
Maltodextrin

Hinweis: Die metrologische Rückführung von Temperatur, Masse und Volumen bei der Herstellung der LVU-Proben wird mittels DAkkS-kalibrierter Referenzmaterialien gewährleistet.

<u>Tabelle 2:</u> Aus den Angaben der Hersteller (deklarierte Gehalte) berechnete Gehalte an EP-Parametern

Parameter	Gehalt pro	100g
B - Bor	64	mg
Ca - Calcium	4897	mg
Cr - Chrom	1125	μg
Cu - Kupfer	49	mg
Fe - Eisen	341	mg
K - Kalium	1947	mg
Mg - Magnesium	3650	mg
Mn - Mangan	37	mg
Mo - Molybdän	1217	μg
P - Phosphor	1694	mg
Se - Selen	1764	μg
Zn - Zink	335	mg

2.1.1 Homogenität

Die Homogenität der abgefüllten nummerierten DLA-Proben wurde anhand einer 8 fach Bestimmung von Kupfer mittels ICP-MS überprüft. Die Wiederholstandardabweichung liegt mit 2,45% geringer als übliche relative Wiederholstandardabweichungen der genormten Methoden (ASU §64 L 00.00-144, s. 3.6.2)[24]. Die Ergebnisse der Homogenitätsuntersuchung sind in der Dokumentation angegeben.

Die Berechnung der Wiederholstandardabweichung S_r der Doppelbestimmungen der Teilnehmer wurde ebenfalls als Homogenitätskriterium für diese LVU herangezogen. Sie liegt für alle Analyten < 4,71% (1,10% - 4,71%) (vgl. Tab 3). Die Wiederholstandardabweichungen sind somit vergleichbar mit den Präzisionsdaten der jeweiligen genormten Methoden (z.B. ASU-Methoden, s. 3.6.2) (vgl. Tab. 3 und 4) [18-28]. Die Wiederholstandardabweichungen der Teilnehmer sind bei den statistischen Kennzahlen angegeben (4.1 bis 4.12).

<u>Tabelle 3:</u> Wiederholstandardabweichungen S_r der Doppelbestimmungen der Teilnehmer (Variationskoeffizienten VK_r in %)

Parameter	VK _r
B - Bor	2,52 %
Ca - Calcium	3,03 %
Cr - Chrom	1,10 %
Cu - Kupfer	1,54 %
Fe - Eisen	2,36 %
K - Kalium	1,75 %
Mg - Magnesium	2,38 %
Mn - Mangan	2,63 %
Mo - Molybdän	4,71 %
P - Phosphor	2,30 %
Se - Selen	2,18 %
Zn - Zink	2,03 %

Desweiteren wurde die Homogenität anhand der **Trendlinien-Funktion der Teilnehmerergebnisse für die chronologisch abgefüllten Einzel-Proben** graphisch zur Information charakterisiert (s. 5.2.2 Homogenität).

Falls die Kriterien für eine ausreichende Homogenität des Probenmaterials bezüglich eines Parameters nicht erfüllt sind, werden die Auswirkungen auf die Zielstandardabweichung geprüft und ggf. erfolgt die Bewertung der Ergebnisse der Teilnehmer mittels z'-Score unter Berücksichtigung der Standardunsicherheit des zugewiesenen Wertes (s. 3.8 und 3.11) [3].

2.1.2 Stabilität

Eine Wasseraktivität (a_W) von < 0,5 ist ein wichtiger Faktor um die Stabilität von trockenen und getrockneten Produkten während der Lagerung zu gewährleisten, optimale Bedingung für die Lagerung ist der a_W -Wert-Bereich von 0,15 - 0,3, in diesem Bereich ist die geringstmögliche Degradationsrate zu erwarten [16].

Die Erfahrungen mit diversen DLA-Materialien zeigen bei vergleichbarer Matrix und Wasseraktivität (a_W -Wert < 0,5) eine gute Haltbarkeit der EP-

Proben und Lagerstabilität gegenüber mikrobiellem Verderb und bezüglich des Gehalts an den EP-Parametern.

Der a_W -Wert der EP-Proben lag bei ca. 0,52 (24,0°C). Die Stabilität des Probenmaterials war somit während des Untersuchungszeitraums unter den angegebenen Lagerbedingungen gewährleistet.

2.2 Probenversand und Informationen zur Untersuchung

An jeden Teilnehmer wurden in der 27. Kalenderwoche 2021 zwei Portionen des Untersuchungsmaterials verschickt. Die Untersuchungsverfahren wurden freigestellt. Die Untersuchungen waren durchzuführen bis spätestens 03. September 2021.

Mit dem Proben-Anschreiben wurden den Teilnehmern u.a. nachstehende Informationen mitgeteilt:

Bei den beiden Mustern handelt es sich um zwei gleiche Proben eines Nahrungsergänzungsmittels mit den o.g. Parametern in der Matrix Tablettenbzw. Kapselpulver (ohne Kapselhülle) mit Maltodextrin als Basis. Die Analysemethode ist freigestellt.

<u>Hinweis:</u> Bitte geben Sie in der Ergebnisdatei die <u>Aufschlussmethode</u> und insbesondere die verwendete <u>Aufschluss-Lösung</u> an, um eine bessere Vergleichbarkeit der Ergebnisse zu ermöglichen. Es ist auch möglich für ein Element Ergebnisse verschiedener Aufschlüsse anzugeben.

Bitte beachten Sie die beiliegenden Informationen zur Eignungsprüfung. (siehe Dokumentation unter Punkt 5.4 EP-Informationen)

2.3 Ergebnisübermittlung

Die Ergebnisabgabe erfolgte einheitlich mittels an die teilnehmenden Labore übergebenen Übermittlungstabellen (per eMail).

Zur statistischen Auswertung kamen die abschließend als Mittelwert der nummerierten Proben angegebenen Gehalte der Analyten. Für die Berechnung der Wiederhol- und Vergleichsstandabweichung wurden auch die Einzelwerte der Doppelbestimmungen herangezogen.

Abgefragt und dokumentiert wurden Einzelergebnisse, Angaben zur Wiederfindung und Stichpunkte zur durchgeführten Methode.

Falls Teilnehmer mehrere Ergebnisse für denselben Parameter abgegeben haben, die mit unterschiedlichen Methoden erhalten wurden, wurden diese Ergebnisse mit derselben Auswertenummer mit einem Buchstaben als Suffix unter Angabe der jeweiligen Methode ausgewertet.

Von 13 Teilnehmern haben 12 mindestens ein Ergebnis abgegeben. 1 Teilnehmer hat keine Ergebnisse abgegeben.

3. Auswertung

3.1 Konsenswert der Teilnehmer (zugewiesener Wert)

Für die Auswertung wurde als zugewiesener Wert $(X_{P}t)$ der robuste Mittelwert der eingesandten Ergebnisse verwendet ("Konsenswert der Teilnehmer"). Die Berechnung erfolgt nach Algorithmus A gemäß Anhang C der ISO 13528 [3]. Liegen < 12 quantitative Ergebnisse und eine große Differenz zwischen robustem Mittelwert und Median vor, ist ggf. der Median als zugewiesener Wert zu verwenden (Kriterium: Δ Median - rob. Mittelwert > 0,3 σpt)[3].

Voraussetzung ist, dass die Mehrzahl der Ergebnisse der teilnehmenden Laboratorien einer Normalverteilung unterliegen bzw. unimodal und symmetrisch verteilt sind. Hierzu erfolgt eine Prüfung der Verteilung u.a. anhand der Kern-Dichte-Schätzung [3, 12].

Falls Hinweise für Quellen von höherer Variabilität, wie z.B. eine bimodale Verteilung der Ergebnisse, vorliegen, werden Ursachen dafür gesucht. In Frage kommt häufig die Verwendung unterschiedlicher Untersuchungsmethoden. Ist dies der Fall, werden nach Möglichkeit getrennte Auswertungen mit eigenen zugewiesenen Werten (Xpti) vorgenommen.

Die Durchführung der Bewertung wird in der Regel ab 7 Ergebnissen durchgeführt, in begründeten Fällen ist eine Bewertung auch ab 5 Ergebnissen zulässig.

Die tatsächlichen Messergebnisse sind anzugeben. Einzelergebnisse die außerhalb des angegebenen Messbereiches eines teilnehmenden Labors liegen (z.B. mit der Angabe > 25 mg/kg oder < 2,5 mg/kg) oder die Angabe "0" werden für die statistische Auswertung nicht berücksichtigt [3].

3.2 Robuste Standardabweichung

Zum Vergleich mit der Zielstandardabweichung σ_{pt} (Standardabweichung für die Eignungsbeurteilung) wird die robuste Standardabweichung (S*) der eingesandten Ergebnisse verwendet. Die Berechnung erfolgt nach Algorithmus A gemäß Anhang C der ISO 13528 [3].

3.3 Wiederholstandardabweichung

Die Wiederholstandardabweichung Sr basiert auf den laborinternen Standardabweichungen der (ausreißerfreien) Einzelergebnisse der Teilnehmer, die jeweils unter Wiederholbedingungen, d.h. Analysen an derselben Probe von demselben Bearbeiter mit demselben Gerät im gleichen Labor innerhalb kurzer Zeit, ermittelt wurden. Sie charakterisiert die mittlere Streuung der Ergebnisse innerhalb der Laboratorien [3] und wird von DLA als Hinweis für die Homogenität des Untersuchungsmaterials herangezogen.

Sofern die Einzelergebnisse der Teilnehmer vorliegen, erfolgt die Berechnung der Wiederholstandabweichung Sr, auch als Standardabweichung innerhalb der Laboratorien Sw bezeichnet, nach: [3, 4].

Die relative Wiederholstandardabweichung in Prozent des Mittelwerts ist als Variationskoeffizient $VK_{\rm r}$ bei den statistischen Kenndaten im Ergebnisteil mit angegeben, sofern die Einzelergebnisse der Teilnehmer vorliegen.

3.4 Vergleichsstandardabweichung

Die Vergleichsstandabweichung S_R stellt eine laborübergreifende Schätzung der Standardabweichung für die Bestimmung des jeweiligen Parameters anhand der (ausreißerfreien) Einzelergebnisse der Teilnehmer dar. Sie berücksichtigt sowohl die Wiederholstandardabweichung S_R als auch die Standardabweichung zwischen den Laboratorien S_W . Vergleichsstandardabweichungen von LVUs können von Vergleichsstandabweichungen von RVs abweichen, da die beteiligten Laboratorien bei LVUs i.d.R. unterschiedliche interne Bedingungen und Methoden zur Bestimmung der Messwerte benutzen. In der vorliegenden Auswertung bezieht sich die Angabe der Vergleichsstandardabweichung daher nicht auf eine spezifische Messmethode, sondern charakterisiert annähernd die Vergleichbarkeit der Ergebnisse der Laboratorien untereinander. Vorausgesetzt der Einfluss von Homogenität und Stabilität des Probenmaterials sind zu vernachlässigen.

Sofern die Einzelergebnisse der Teilnehmer vorliegen, erfolgt die Berechnung der Vergleichsstandabweichung S_R nach: [3, 4].

Die relative Vergleichsstandardabweichung in Prozent des Mittelwerts ist als Variationskoeffizient VK_R bei den statistischen Kenndaten im Ergebnisteil mit angegeben, sofern die Einzelergebnisse der Teilnehmer vorliegen, und die Bedeutung unter 3.9 näher erläutert.

3.5 Ausschluss von Ergebnissen und Ausreißern

Ergebnisse können vorab von der statistischen Auswertung ausgeschlossen werden, wenn offensichtliche grobe Fehler, wie z.B. falsche Einheiten, Dezimalstellen, zu geringe Anzahl signifikanter Stellen (gültige Ziffern) oder Angaben für einen falschen Prüfgegenstand vorliegen [2]. Auch wenn ein Ergebnis z.B. mit einem Faktor >10 deutlich vom Mittelwert abweicht und einen Einfluss auf die robuste Statistik hat, kann ein Ergebnis von der statistischen Auswertung ausgeschlossen werden [3].

Alle Ergebnisse sollen mit mindestens 2 signifikanten Stellen (gültige Ziffern) angegeben werden. Die Angabe von 3 Stellen ist i.d.R. Ausreichend.

Ergebnisse, die mit unterschiedlichen Verfahren erhalten wurden und zu einer erhöhten Variabilität und/oder zu einer bi- oder mehrmodalen Verteilung der Ergebnisse führen, werden separat behandelt oder, wenn dafür zu wenige Ergebnisse vorliegen, ausgeschlossen. Hierfür erfolgt die Prüfung der Ergebnisse anhand der Kern-Dichte-Schätzung [3, 12].

Auf Ausreißer wird mittels robuster Statistik (Algorithmus A) geprüft: Ergebnisse, die um mehr als das Dreifache der robusten Standardabweichung vom robusten Mittelwert abweichen, können danach als Ausreißer eingestuft werden [3]. Aufgrund der Anwendung der robusten Statistik werden Ausreißer i.d.R. nicht von der Auswertung ausgeschlossen, sofern keine anderen Gründe vorliegen (s.o.) [3]. Ermittelte Ausreißer werden im Ergebnisteil nur genannt, wenn sie von der statistischen Auswertung ausgeschlossen wurden.

3.6 Zielstandardabweichung (für die Eignungsbeurteilung)

Die Zielstandardabweichung des zugewiesenen Wertes σ_{pt} (= Standardabweichung für die Eignungsbeurteilung) kann nach unten dargestellten, unterschiedlichen Verfahren bestimmt werden.

Sofern ein akzeptabler Quotient S^*/σ_{P^t} vorliegt, wird für die Eignungsbeurteilung bevorzugt die Zielstandardabweichung des allgemeinen Modells nach Horwitz verwendet, da diese in der Regel für Auswertungen von Laborvergleichsuntersuchungen, bei denen von den Teilnehmern unterschiedliche Analysenmethoden eingesetzt werden, geeignet ist. Die Zielstandardabweichung aus der Auswertung von Präzisionsdaten eines Versuchs leitet sich dagegen aus Ringversuchen mit vorgegebener Analysenmethode ab.

In Fällen, in denen beide o.g. Modelle ungeeignet sind, wird die Zielstandardabweichung anhand von Werten aus Erkenntnissen nach 3.6.3 ermittelt.

Zur Information werden, sofern verfügbar, jeweils die z-Scores beider Modelle in der Auswertung angegeben.

Zur Bewertung der Ergebnisse wurde für alle nachstehenden Parameter die Zielstandardabweichung nach dem <u>allgemeinen Modell nach Horwitz</u> herangezogen (s. 3.6.1): Bor, Calcium, Chrom, Kupfer, Eisen, Kalium, Mangan, Molybdän, Phosphor und Selen.

Die Zielstandardabweichung der Auswertung eines <u>Versuchs zur Präzision</u> (s. 3.6.2) wurde für die nachstehenden Parameter herangezogen (ASU §64 Methode L 00.00-144): Magnesium und Zink.

3.6.1 Allgemeines Modell nach Horwitz

Anhand der in zahlreichen LVUs für unterschiedliche Parameter und Analysenmethoden erhaltenen statistischen Kenndaten hat Horwitz ein allgemeines Modell für die Schätzung der Vergleichsstandardabweichung σ_R abgeleitet [6]. Später wurde das Modell von Thompson für bestimmte Konzentrationsbereiche modifiziert [10]. Die Vergleichsstandardabweichung σ_R kann als relative Zielstandardabweichung σ_{pt} in % des zugewiesenen Wertes verwendet werden und nach untenstehenden Gleichungen berechnet werden [3]. Dabei wird für die Konzentration c der zugewiesene Wert X_{pt} eingesetzt.

Gleichungen	Konzentrationsbereiche	entspricht
$\sigma_R = 0,22c$	$c < 1,2 \times 10^{-7}$	< 120 µg/kg
$\sigma_R = 0,02c^{0,8495}$	$1,2 \times 10^{-7} \le c \le 0,138$	≥ 120 µg/kg
$\sigma_R = 0,01c^{0.5}$	c > 0,138	> 13,8 g/100g

mit c = Massenanteil des Analyten (als relative Größe, z.B. 1 mg/kg = 1 ppm = 10^{-6} kg/kg)

3.6.2 Auswertung eines Versuchs zur Präzision

Aus der Vergleichsstandardabweichung σ_R und der Wiederholstandardabweichung σ_r eines Versuchs zur Präzision einer Methode (Ringversuch oder LVU) kann unter Berücksichtigung der Anzahl der Wiederholmessungen m der Teilnehmer in der vorliegenden Vergleichsuntersuchung die Zielstandardabweichung σ_{pt} abgeleitet werden [3]:

$$\sigma_{pt} = \sqrt{\sigma_R^2 - \sigma_r^2 \left(m - 1 / m \right)}$$

Die in Tabelle 4 angegebenen relativen Wiederholstandardabweichungen (RSD_{r}) und relativen Vergleichsstandabweichungen (RSD_{R}) wurden in Ringversuchen mittels der angegebenen Methoden ermittelt.

Die dort gekennzeichneten resultierenden Zielstandardabweichungen σ_{pt} wurden zur Bewertung der Ergebnisse herangezogen bzw. zur Information zusätzlich bei den Kennzahlen angegebenen.

<u>Tabelle 4:</u> Relative Wiederholstandardabweichungen (RSD_r) und relative Vergleichsstandabweichungen (RSD_R) gemäß ausgewählter Auswertungen von Versuchen zur Präzision und die resultierende Zielstandardabweichung σ_{pt} [21-24]

Para- meter	Matrix	Mittel- werte [mg/kg]	RSD _r	RSD_R	σ pt	Methode / Literatur
Ca	Hummer	183	4,90%	6,31%	5,27%	ICP-OES [24]
	Kindernährmittel Soja	6191	3,41%	7,97%	7,60% ¹	ICP-OES [24]
Cr	Säuglingsnahrung	0,17	7,3%	19%	18,3%1	GF-AAS [22]
	Reispulver	0,11	19,2%	35%	32,3%	GF-AAS [22]
Cu	Hummer	16,40	5,72%	6,82%	5,49%	ICP-OES [24]
	Kindernährmittel Soja	4,51	4,30%	11,06%	10,6%1	ICP-OES [24]
Fe	Hummer	12,1	6,45%	8,59%	7,28%	ICP-OES [24]
	Kindernährmittel Soja	77	2,75%	6,98%	6,70% ¹	ICP-OES [24]
K	Hummer	871	3,63%	6,27%	5,71%	ICP-OES [24]
	Kindernährmittel Soja	6733	4,08%	5,49%	4,67%1	ICP-OES [24]
Mn	Hummer	1,20	4,74%	7,95%	7,21%	ICP-OES [24]
	Kindernährmittel Soja	2,19	4,67%	13,7%	13,3%1	ICP-OES [24]
Mg	Hummer	85	3,73%	8,63%	8,21%	ICP-OES [24]
	Kindernährmittel Soja	599	4,30%	7,64%	7,01% ¹	ICP-OES [24]
Мо	Säuglingsnahrung	0,50	6,6%	21%	20,5%1	GF-AAS [22]
	Reispulver	0,56	8,7%	20%	19,0%	GF-AAS [22]
Р	Hummer	973	3,16%	7,13%	6,78%	ICP-OES [24]
	Kindernährmittel Soja	4129	3,45%	7,87%	7,48%1	ICP-OES [24]
Se	Katfisch	1,797	9,85%	10,1%	7,31%¹	AAS [23]
	Reis	0,374	2,41%	11,8%	11,7%	AAS [23]
Zn	Hummer	13,9	4,63%	7,90%	7,19%	ICP-OES [24]
	Kindernährmittel Soja	43,5	2,60%	6,89%	6,64% ¹	ICP-OES [24]

in der Auswertung (s. Abschnitt 4) verwendete Werte

3.6.3 Werte aus Erkenntnissen

Die Zielstandardabweichung kann für die Eignungsbeurteilung auf einen Wert festgesetzt werden, der dem Leistungsfähigkeitsniveau entspricht, das der Koordinator für ein wünschenswertes Ziel für die teilnehmenden Laboratorien hält [3].

In der vorliegenden LVU wurden die Zielstandardabweichungen gemäß 3.6.1 oder 3.6.2 als geeignet angesehen.

Tabelle 5 zeigt ausgewählte Kenndaten der Teilnehmer-Ergebnisse der vorliegenden LVU im Vergleich zu LVU Ergebnissen der Vorjahre.

<u>Tabelle 5:</u> Kenndaten der aktuellen LVU (dunkelgrau unterlegt) im Vergleich zu den vorangegangenen LVUs ab 2016 (SD = Standardabweichung, VK = Variationskoeffizient)

Parame- ter	Matrix (Pulver)	rob. Mit- telwert [mg/kg]	rob. SD (S*) [mg/kg]	rel. SD (VK _{s*}) [%]	Quotient S*/σ _{Pt}	DLA- Bericht
В	Kartoffel	3,88	0,689	17,8%	1,4	DLA 46/2017
В	Tablette/Kapsel	1170	183	15,6%	2,01	DLA 44/2017
В	Tablette/Kapsel	637	25,8	4,04%	0,67	DLA 47/2019
В	Tablette/Kapsel	630	43,3	6,88%	1,1	DLA ptSU03 (2021)
Ca	Kartoffel	238	12,0	5,04%	0,72	DLA 46/2017
Ca	Tablette/Kapsel	81600	5240	6,42%	1,8 ¹	DLA 44/2017
Ca	Tablette/Kapsel	52400	3650	6,95%	0,92	DLA 47/2019
Ca	Tablette/Kapsel	53245	2390	4,49%	1,4	DLA ptSU03 (2021)
Cr	Muschel-Fisch	1,23	0,266	21,6%	1,4	DLA 58/2016
Cr	Kartoffel	**	_	_	_	DLA 46/2017
Cr	Tablette/Kapsel	21,0	4,74	22,6%	1,9	DLA 44/2017
Cr	Tablette/Kapsel	13,5	2,06	15,2%	1,4	DLA 47/2019
Cr	Tablette/Kapsel	14,3	1,95	13,7%	1,3	DLA ptSU03 (2021)
Cu	Muschel-Fisch	5,75	0,439	7,63%	0,62	DLA 58/2016
Cu	Kartoffel	1,98	0,117	5,90%	0,41	DLA 46/2017
Cu	Tablette/Kapsel	432	33,1	7,66%	1,2	DLA 44/2017
Cu	Tablette/Kapsel	441	23,8	5,40%	0,84	DLA 47/2019
Cu	Tablette/Kapsel	438	38,5	8,79%	1,4	DLA ptSU03 (2021)
Fe	Muschel-Fisch	305	22,1	7,24%	1,1	DLA 58/2016
Fe	Kartoffel	15,0	1,22	8,10%	0,76	DLA 46/2017
Fe	Tablette/Kapsel	3200	357	11,2%	2,01	DLA 44/2017
Fe	Tablette/Kapsel	3410	133	3,90%	0,83	DLA 47/2019
Fe	Tablette/Kapsel	3468	184	5,30%	1,1	DLA ptSU03 (2021)

Fortsetzung nächste Seite

Parame- ter	Matrix (Pulver)	rob. Mit- telwert [mg/kg]	rob. SD (S*) [mg/kg]	rel. SD (VK _{S*}) [%]	Quotient S*/σ _{Pt}	DLA- Bericht
K	Kartoffel	13200	604	4,59%	1,2	DLA 46/2017
K	Tablette/Kapsel	53400	3160	5,92%	1,9	DLA 44/2017
K	Tablette/Kapsel	19400	721	3,71%	1,0	DLA 47/2019
K	Tablette/Kapsel	19502	604	3,10%	0,86	DLA ptSU03 (2021)
Mg	Kartoffel	736	27,1	3,68%	0,62	DLA 46/2017
Mg	Tablette/Kapsel	48500	3660	7,55%	1,9 ¹	DLA 44/2017
Mg	Tablette/Kapsel	34500	2480	7,19%	1,0	DLA 47/2019
Mg	Tablette/Kapsel	34286	2218	6,47%	0,92	DLA ptSU03 (2021)
Mn	Muschel-Fisch	8,79	0,696	7,93%	0,69	DLA 58/2016
Mn	Kartoffel	3,66	0,327	8,9%	0,68	DLA 46/2017
Mn	Tablette/Kapsel	678	73,9	10,1%	1,8	DLA 44/2017
Mn	Tablette/Kapsel	390	26,1	6,68%	1,0	DLA 47/2019
Mn	Tablette/Kapsel	401	27,2	6,79%	1,0	DLA ptSU03 (2021)
Мо	Muschel-Fisch	0,536	0,0400	7,45%	0,42	DLA 58/2016
Мо	Kartoffel	0,197	0,0161	8,2%	0,40	DLA 46/2017
Мо	Tablette/Kapsel	12,1	2,48	20,5%	1,9	DLA 44/2017
Мо	Tablette/Kapsel	12,3	1,97	16,1%	1,5	DLA 47/2019
Мо	Tablette/Kapsel	12,0	1,26	10,5%	0,95	DLA ptSU03 (2021)
Р	Kartoffel	1451	49,1	3,38%	0,63	DLA 46/2017
Р	Tablette/Kapsel	53200	2720	5,11%	1,6	DLA 44/2017
Р	Tablette/Kapsel	17400	732	4,21%	1,1	DLA 47/2019
P	Tablette/Kapsel	17322	930	5,37%	1,5	DLA ptSU03 (2021)
Se	Tablette/Kapsel	20,9	4,34	20,8%	1,8 ¹	DLA 44/2017
Se	Tablette/Kapsel	19,6	0,992	5,06%	0,49	DLA 47/2019
Se	Tablette/Kapsel	20,6	2,57	12,5%	1,2	DLA ptSU03 (2021)
Zn	Muschel-Fisch	51,0	5,17	10,2%	1,1	DLA 58/2016
Zn	Kartoffel	7,83	0,726	9,30%	0,79	DLA 46/2017
Zn	Tablette/Kapsel	2960	143	4,85%	1,0	DLA 44/2017
Zn	Tablette/Kapsel	3170	118	3,74%	0,79	DLA 47/2019
Zn	Tablette/Kapsel	3171	268	8,46%	1,3	DLA ptSU03 (2021)

 $^{^{\}scriptscriptstyle 1}$ mit Zielstandardabweichung $\sigma_{ t pt}$ '

^{**} keine statistische Auswertung (< 7 bzw. < 5 Ergebnisse)

3.7 z-Score

Der z-Score wird herangezogen zur Beurteilung der Ergebnisse der teilnehmenden Labore. Er besagt um welches Vielfache der Zielstandardabweichung (σ_{pt}) das Ergebnis (x_i) des betreffenden Teilnehmers vom zugewiesenen Wert (X_{pt}) abweicht [3].

Die Berechnung erfolgt nach:

$$z_i = \frac{\left(x_i - x_{pt}\right)}{\sigma_{pt}}$$

Die Anforderungen an die Analytik gelten im Allgemeinen als erfüllt, wenn

$$-2 \le z \le 2$$
.

Der für die Eignungsprüfung gültige z-Score wird in der Auswertung mit z-Score (σ_{pt}) bezeichnet, während der als z-Score (Info) bezeichnete Wert rein informativen Charakter hat. Die beiden z-Scores werden mit den unterschiedlichen Zielstandardabweichungen nach 3.6 berechnet.

3.7.1 Warn- und Eingriffssignale

Gemäß der ISO 13528 für statistische Verfahren für Eignungsprüfungen wird empfohlen, dass ein Ergebnis, das einen z-Wert > 3,0 oder < - 3,0 ergibt, als "Eingriffssignal" zu werten ist [3]. Gleichermaßen ist ein z-Wert > 2,0 oder < -2,0 als "Warnsignal" zu beurteilen. Ein einzelnes "Eingriffssignal" oder aber "Warnsignale" bei zwei aufeinander folgenden LVU-Runden sind als Beleg dafür zu werten, dass eine Anomalie aufgetreten ist, die untersucht werden muss. Eine Fehler- bzw. Ursachenanalyse kann durch Prüfung des Analysenablaufs inkl. Verständnis und Umsetzung der Messung durch das Personal, Einzelheiten des Messablaufs, Kalibrierung von Geräten und Zusammensetzung von Reagenzien, Übertragungs- bzw. Berechnungsfehler, Richtigkeit und Präzision sowie Einsatz von Referenzmaterial durchgeführt werden. Falls notwendig, muss auf die Probleme durch angemessene Korrekturmaßnahmen reagiert werden [3].

DLA stellt in den z-Score-Abbildungen die Grenzen für die Warn- und Eingriffssignale als gelbe bzw. rote Linien dar. Die jeweiligen Werte haben gemäß ISO 13528 nur Gültigkeit sofern ≥ 10 Ergebnisse vorliegen [3].

3.8 z'-Score

Der z'-Score kann u.a. zur Beurteilung der Ergebnisse der teilnehmenden Labore herangezogen werden, wenn die Standardunsicherheit des zugewiesenen Wertes berücksichtigt werden muss (s. 3.11). Der z'-Score drückt das Verhältnis der Abweichung des Ergebnisses (xi) des betreffenden Teilnehmers vom zugewiesenen Wert zur Wurzel aus der Quadratsumme von Zielstandardabweichung (σ_{pt}) und Standardunsicherheit ($U(x_{pt})$) aus [3].

Die Berechnung erfolgt nach:

$$z_{i}' = \frac{x_{i} - x_{pt}}{\sqrt{\sigma_{pt}^{2} + u_{(x_{pt})}^{2}}}$$

Sofern eine Bewertung der Ergebnisse mittels z'-Score erfolgt, haben wir im Folgenden den Ausdruck im Nenner als Zielstandardabweichung σ_{pt} ' definiert.

Die Anforderungen an die Analytik gelten im Allgemeinen als erfüllt, wenn

$$-2 \le z' \le 2$$
.

Zu Warn- und Eingriffssignalen siehe 3.7.1.

3.9 Variationskoeffizient (VKR)

Der Variationskoeffizient (VK_R) der Vergleichspräzision (= relative Vergleichsstandardabweichung) errechnet sich aus der Vergleichsstandabweichung S_R und dem Mittelwert [4, 13]:

$$VK_R = \frac{S_R \times 100}{X}$$

Im Gegensatz zur Standardabweichung als ein Maß für die absolute Variabilität gibt der VK_R die relative Variabilität innerhalb eines Datenbereichs an. Während ein niedriger VK_R von z.B. < 5-10% als Beleg für einen homogenen Ergebnissatz gelten kann, deutet ein VK_R von mehr als 50% auf eine "starke Inhomogenität der statistischen Masse" hin, sodass die Eignung für bestimmte Anwendungszwecke wie die Beurteilung von Höchstwertüberschreitungen oder die Leistungsbeurteilung der teilnehmenden Laboratorien ggf. nicht mehr gegeben sein kann [3].

3.10 Quotient S*/opt

In Anlehnung an den HorRat-Wert kann die Bewertung einer Laborvergleichs- untersuchung als aussagekräftig gelten, wenn der Quotient von robuster Standardabweichung S* und Zielstandardabweichung σ_{pt} nicht über 2 liegt. Ein über 2 liegender Wert bedeutet, dass die Präzision nicht zufriedenstellend ist, d.h., dass die Präzision aus analytischen Gründen zu variabel ist oder die festgestellte Variation höher ist als für die angewandte Methode geschätzt wurde. Somit ist eine Vergleichbarkeit der Messergebnisse nicht gewährleistet [3].

3.11 Standardunsicherheit und Rückführbarkeit

Jeder zugewiesene Wert ist mit einer Standardunsicherheit behaftet, die von der Analysenmethode, Unterschieden der eingesetzten Analysenmethoden, dem Probenmaterial und der Anzahl der Teilnehmer (P) einer LVU beeinflusst wird. Die Standardunsicherheit des zugewiesenen Wertes (U(Xpt)) wird für die vorliegende LVU wie folgt berechnet [3]:

$$u_{(x_{pt})} = 1,25 \times \frac{s^*}{\sqrt{p}}$$

Ist $U(x_{pt}) \leq 0$, 3 σ_{pt} muss die Standardunsicherheit des zugewiesenen Wertes nicht berücksichtigt werden [3]. Ein deutliches Überschreiten des Wertes von 0,3 ist ein Hinweis darauf, dass die Zielstandardabweichung ggf. zu gering für die Standardunsicherheit des zugewiesenen Wertes gewählt wurde.

Die Rückführbarkeit des zugewiesenen Wertes wird anhand des Konsenswertes als robuster Mittelwert der Teilnehmerergebnisse gewährleistet.

4. Ergebnisse

Anmerkung zur Verteilung der Ergebnisse:

Die Kerndichte-Schätzungen zeigen für alle Parameter eine annähernd symmetrische Verteilung der Ergebnisse (Abb. siehe Dokumentation 5.3). Teilweise sind leichte Schultern und separate kleinere Peaks zu erkennen, die auf Einzelwerte und Ausreißer zurückzuführen sind.

<u>Anmerkungen zu den Kenndaten:</u>

Die Zielstandardabweichungen wurden für alle Parameter nach dem Modell nach Horwitz bzw. nach Kenndaten eines Versuchs zur Präzision (ASU §64 Methode) berechnet. Dabei wurde bevorzugt die Bewertung nach Horwitz verwendet, solange die Quotienten S*/ σ_{pt} im Bereich von \leq 2,0 lagen. In allen anderen Fällen wurde die aus ASU §64 Präzisionsdaten berechnete Zielstandardabweichung verwendet.

Für alle Parameter zeigte die Verteilung der Ergebnisse eine geringe bis normale Variabilität. Die Quotienten S^*/σ_{pt} lagen alle im Bereich von 0,86 bis 1,5 (s. Tab. 5).

Die robusten Standardabweichungen sowie Wiederhol- und Vergleichsstandardabweichungen liegen im Bereich von etablierten Werten für die eingesetzten Bestimmungsmethoden (vgl. 3.6.2).

Die Vergleichbarkeit der Ergebnisse ist gegeben.

Es liegen 73% bis 100% der Ergebnisse im jeweiligen Zielbereich.

Die robusten Mittelwerte der Teilnehmer-Ergebnisse lagen für alle Parameter im Bereich von 89% bis 127% der Gehalte gemäß Herstellerangaben (s. Tabelle 2): bei 89-95% für Cu, Mg und Zn, bei 98-102% für B, Fe, K, Mo und P sowie bei 108-127% für Ca, Cr, Mn und Se.

Alle folgenden Tabellen sind anonymisiert. Den teilnehmenden Instituten wird mit dem Versand dieser Auswertung ihre individuelle Auswertenummer mitgeteilt.

In der oberen Tabelle sind die Kenndaten aufgeführt:

Kenndaten
Anzahl der Messergebnisse
Anzahl der Ausreißer
Mittelwert
Median
Robuster Mittelwert (Xpt)
Robuste Standardabweichung (S*)
Anzahl mit m Wiederholmessungen
Wiederholstandardabweichung (Sr)
Variationskoeffizient (VK _r)in %
$\label{eq:Vergleichsstandardabweichung} \mbox{ (S_R) }$
Variationskoeffizient (VKR) in %
Zielkenndaten:
Zielstandardabweichung σ_{pt} oder σ_{pt} '
Zielstandardabweichung zur Information
untere Grenze des Zielbereichs (X_{pt} - $2\sigma_{pt}$) *
obere Grenze des Zielbereichs (X_{pt} + $2\sigma_{pt}$)*
Quotient S*/opt oder S*/opt'
Standardunsicherheit U(Xpt)
Ergebnisse im Zielbereich
Prozent im Zielbereich

^{*} Zielbereich berechnet mit z-Score oder z'-Score

In der unteren Tabelle sind die Ergebnisse der teilnehmenden Labore auf 3 gültige Stellen formatiert dargestellt**:

Auswerte-		Abweichung			Hinweis
nummer	Parameter		z-Score	z-Score	
Evaluation	[Einheit / Unit]	Deviation	σpt	(Info)	Remark
number					

^{**} Im Dokumentationsteil sind die Ergebnisse so angegeben wie sie von den Teilnehmern übermittelt wurden.

4.1 B - Bor in mg/100g

Kenndaten	
Anzahl der Messergebnisse	7
Anzahl der Ausreißer	0
Mittelwert	63,0
Median	63,4
Robuster Mittelwert (Xpt)	63,0
Robuste Standardabweichung (S*)	4,33
Anzahl mit 2 Wiederholmessungen	7
Wiederholstandardabweichung (S_r)	1,58
Variationskoeffizient (VK _r)	2,52%
	4,00
$Variationskoeffizient (VK_R)$	6,36%
Zielkenndaten:	
Zielstandardabweichung σ_{Pt}	3,82
Untere Grenze des Zielbereichs	55,3
Obere Grenze des Zielbereichs	70,6
Quotient S*/opt	1,1
Standardunsicherheit U(Xpt)	2,05
Ergebnisse im Zielbereich	7
Prozent im Zielbereich	100%

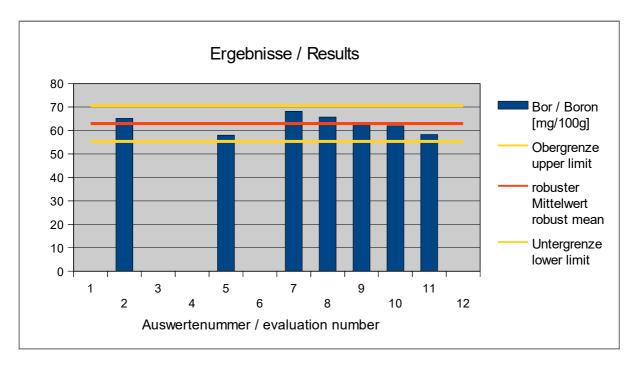


Abb. / Fig. 1: Ergebnisse Bor / Results Boron

Auswerte- nummer	Bor / Boron [mg/100g]	Abweichung [mg/100g]	z-Score	Hinweis
Evaluation number		Deviation [mg/100g]	(o pt)	Remark
1				
2	65 , 2	2,21	0,58	
3				
4				
5	58 , 0	-4,98	-1,3	
6				
7	68 , 2	5,22	1,4	
8	65 , 8	2,77	0,73	
9	63,4	0,42	0,11	
10	62,0	-0,98	-0,26	
11	58 , 3	-4,68	-1,2	
12				

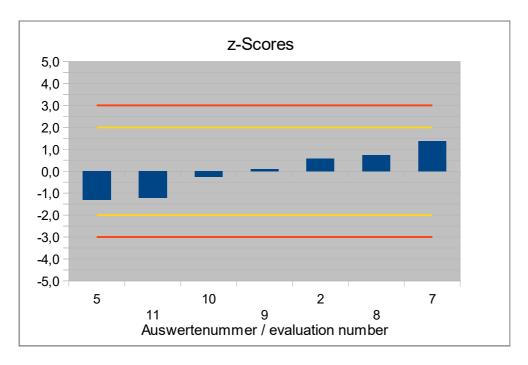


Abb. / Fig. 2: z-Scores Bor / Boron

4.2 Ca - Calcium in mg/100g

Kenndaten	
Anzahl der Messergebnisse	11
Anzahl der Ausreißer	-
Mittelwert	5419
Median	5296
Robuster Mittelwert (Xpt)	5325
Robuste Standardabweichung (S*)	239
Anzahl mit 2 Wiederholmessungen	11
Wiederholstandardabweichung (S_r)	164
Variationskoeffizient (VK _r)	3,03%
	476
Variationskoeffizient (VK _R)	8,78%
Zielkenndaten:	
Zielstandardabweichung $\sigma_{\!P} t$	166
Zielstandardabweichung (zur	404
Information)	- U - I
Untere Grenze des Zielbereichs	4993
Obere Grenze des Zielbereichs	5656
Quotient S*/opt	1,4
Standardunsicherheit U(Xpt)	90,1
Ergebnisse im Zielbereich	8
Prozent im Zielbereich	73%

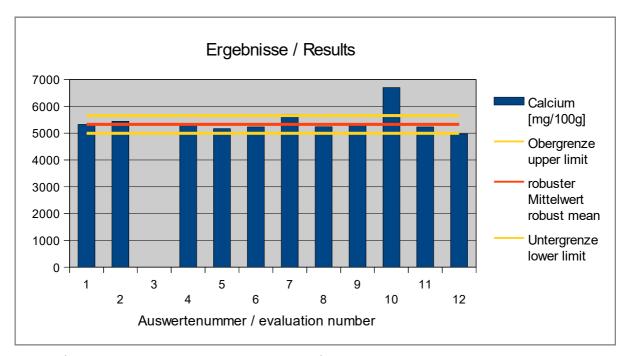


Abb. / Fig. 3: Ergebnisse Calcium / Results Calcium

Auswerte- nummer	Calcium [mg/100g]	Abweichung [mg/100g]	z-Score	z-Score	Hinweis
Evaluation number		Deviation [mg/100g]	(σ_{pt})	(Info)	Remark
1	5326	1,5	0,01	0,00	
2	5441	117	0,70	0,29	
3					
4	5300	-25	-0,15	-0,06	
5	5171	-154	-0,93	-0,38	
6	5231	-94	-0 , 56	-0,23	
7	5706	381	2,3	0,94	
8	5236	-88	-0 , 53	-0,22	
9	5296	-29	-0,17	-0,07	
10	6700	1375	8,3	3,4	
11	5235	-90	-0,54	-0,22	
12	4970	-355	-2,1	-0,88	

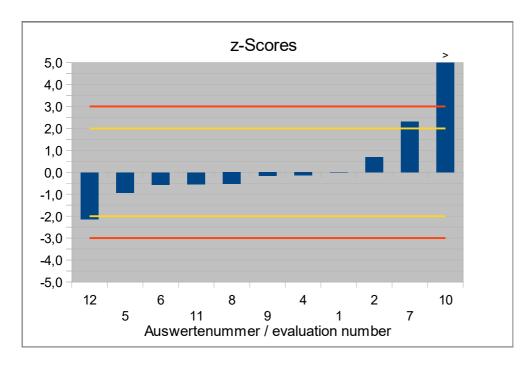


Abb. / Fig. 4: z-Scores Calcium

4.3 Cr - Chrom in μ g/100g

Kenndaten	
Anzahl der Messergebnisse	12
Anzahl der Ausreißer	0
Mittelwert	1416
Median	1439
Robuster Mittelwert (Xpt)	1428
Robuste Standardabweichung (S*)	195
Anzahl mit 2 Wiederholmessungen	12
Wiederholstandardabweichung (S_r)	15,6
Variationskoeffizient (VK _r)	1,10%
	197
Variationskoeffizient (VK _R)	13,9%
Zielkenndaten:	
Zielstandardabweichung $\sigma_{P}t$	153
Zielstandardabweichung (zur	261
Information)	
Untere Grenze des Zielbereichs	1122
Obere Grenze des Zielbereichs	1734
Quotient S*/opt	1,3
Standardunsicherheit U(Xpt)	70,4
Ergebnisse im Zielbereich	10
Prozent im Zielbereich	83%

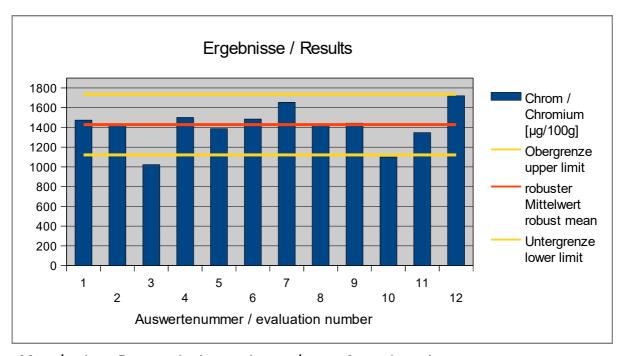


Abb. / Fig. 5: Ergebnisse Chrom / Results Chromium

Auswerte- nummer	Chrom / Chromium	Abweichung [µg/100g]	z-Score	z-Score	Hinweis
Evaluation number	[µg/100g]	Deviation [μg/100g]	(σ_{pt})	(Info)	Remark
1	1474	46	0,30	0,18	
2	1422	-6,1	-0,04	-0,02	
3	1022	-406	-2,7	-1,6	
4	1500	72	0,47	0,28	
5	1387	-41	-0,27	-0,16	
6	1484	56	0,36	0,21	
7	1654	226	1,5	0,87	
8	1434	5,9	0,04	0,02	
9	1443	15	0,10	0,06	
10	1100	-328	-2,1	-1,3	
11	1347	-81	-0,53	-0,31	
12	1720	292	1,9	1,1	

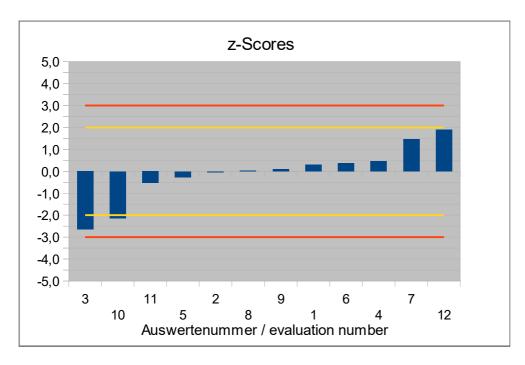


Abb. / Fig. 6: z-Scores Chrom / Chromium

4.4 Cu - Kupfer in mg/100g

Kenndaten	
Anzahl der Messergebnisse	11
Anzahl der Ausreißer	1
Mittelwert	43,0
Median	43,0
Robuster Mittelwert (Xpt)	43,8
Robuste Standardabweichung (S*)	3,85
Anzahl mit 2 Wiederholmessungen	11
Wiederholstandardabweichung (S_r)	0,662
Variationskoeffizient (VK _r)	1,54%
	5,47
Variationskoeffizient (VK _R)	12,7%
Zielkenndaten:	
Zielstandardabweichung σ_{Pt}	2,80
Zielstandardabweichung (zur Information)	4,65
Untere Grenze des Zielbereichs	38,2
Obere Grenze des Zielbereichs	49,4
Quotient S*/opt	1,4
Standardunsicherheit U(Xpt)	1,45
Ergebnisse im Zielbereich	9
Prozent im Zielbereich	82%

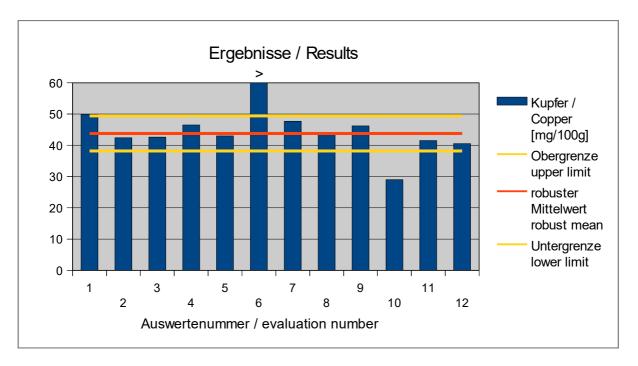


Abb. / Fig. 7: Ergebnisse Kupfer / Results Copper

Auswerte- nummer	Kupfer / Copper	Abweichung [mg/100g]	z-Score	z-Score	Hinweis
Evaluation number	[mg/100g]	Deviation [mg/100g]	(o pt)	(Info)	Remark
1	49,9	6,13	2,2	1,3	
2	42,4	-1,37	-0,49	-0,29	
3	42,6	-1,17	-0,42	-0,25	
4	46,5	2,73	1,0	0,59	
5	43,0	-0,77	-0,28	-0,17	
6	467				Ausreisser / Outlier
7	47,7	3,93	1,4	0,84	
8	43,6	-0,22	-0,08	-0,05	
9	46,2	2,43	0,87	0,52	
10	29,0	-14,8	-5, 3	-3,2	
11	41,5	-2,27	-0,81	-0,49	
12	40,5	-3,27	-1,2	-0,70	

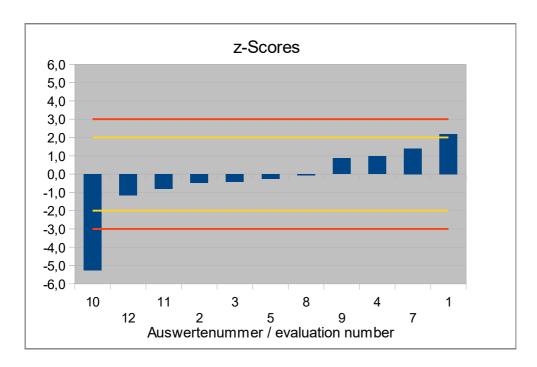


Abb. / Fig. 8: z-Scores Kupfer / Copper

4.5 Fe - Eisen in mg/100g

Kenndaten	
Anzahl der Messergebnisse	12
Anzahl der Ausreißer	0
Mittelwert	347
Median	344
Robuster Mittelwert (Xpt)	347
Robuste Standardabweichung (S*)	18,4
Anzahl mit 2 Wiederholmessungen	12
Wiederholstandardabweichung (S_r)	8,20
Variationskoeffizient (VK _r)	2,36%
	18,3
$Variationskoeffizient (VK_R)$	5,28%
Zielkenndaten:	
Zielstandardabweichung $\sigma_{P}t$	16,3
Zielstandardabweichung (zur	23,3
Information)	23/3
Untere Grenze des Zielbereichs	314
Obere Grenze des Zielbereichs	379
Quotient S*/opt	1,1
Standardunsicherheit U(Xpt)	6 , 63
Ergebnisse im Zielbereich	12
Prozent im Zielbereich	100%

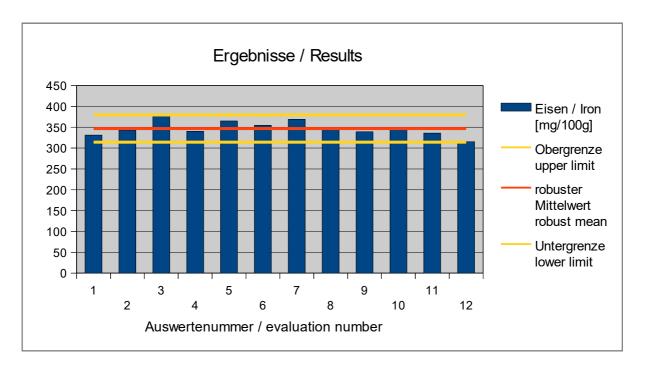


Abb. / Fig. 9: Ergebnisse Eisen / Results Iron

Auswerte- nummer	Eisen / Iron [mg/100g]	Abweichung [mg/100g]	z-Score	z-Score	Hinweis
Evaluation number		Deviation [mg/100g]	(σ_{pt})	(Info)	Remark
1	331	-15,6	-1,0	-0,67	
2	343	-3,8	-0,24	-0,16	
3	379	31,9	2,0	1,4	
4	340	-6,8	-0,42	-0,29	
5	365	18,2	1,1	0,78	
6	355	7,7	0,47	0,33	
7	369	22,2	1,4	1,0	
8	346	-1,2	-0,07	-0,05	
9	339	-7,8	-0,48	-0,34	
10	345	-1,8	-0,11	-0,08	
11	336	-10,8	-0,67	-0,47	
12	315	-31,8	-2,0	-1,4	

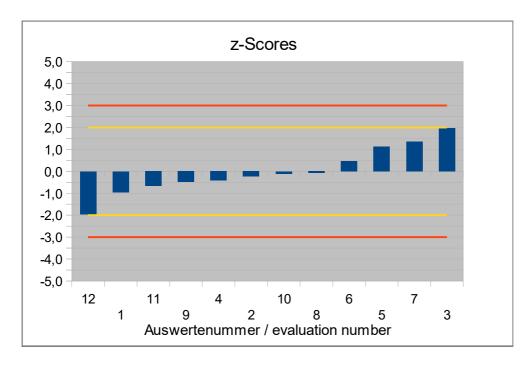


Abb. / Fig. 10: z-Scores Eisen / Iron

4.6 K - Kalium in mg/100g

Kenndaten	
Anzahl der Messergebnisse	11
Anzahl der Ausreißer	0
Mittelwert	1950
Median	1941
Robuster Mittelwert (Xpt)	1950
Robuste Standardabweichung (S*)	60,4
Anzahl mit 2 Wiederholmessungen	11
Wiederholstandardabweichung (S_r)	34,1
Variationskoeffizient (VK _r)	1,75%
	58,5
Variationskoeffizient (VK _R)	3,00%
Zielkenndaten:	
Zielstandardabweichung $\sigma_{P}t$	70,5
Zielstandardabweichung (zur Information)	91,1
Untere Grenze des Zielbereichs	1809
Obere Grenze des Zielbereichs	2091
Quotient S*/opt	0,86
Standardunsicherheit U(Xpt)	22,7
Ergebnisse im Zielbereich	11
Prozent im Zielbereich	100%

Abb. / Fig. 11: Ergebnisse Kalium / Results Potassium

Auswerte- nummer	Kalium / Potassium	Abweichung [mg/100g]	z-Score	z-Score	Hinweis
Evaluation number	[mg/100g]	Deviation [mg/100g]	(o pt)	(Info)	Remark
1	1890	-60	-0,85	-0,66	
2	2020	69	1,0	0,76	
3					
4	2000	50	0,71	0,55	
5	1941	-9,2	-0,13	-0,10	
6	1980	30	0,42	0,33	
7	2002	52	0,73	0,57	
8	1897	-53	-0,75	-0,58	
9	1939	-11	-0,16	-0,12	
10	2000	50	0,71	0,55	
11	1864	-86	-1,2	-0,95	
12	1920	-30	-0,43	-0,33	

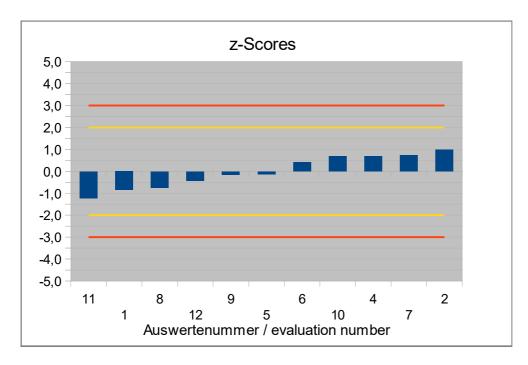


Abb. / Fig. 12: z-Scores Kalium / Potassium

4.7 Mg - Magnesium in mg/100g

Kenndaten	
Anzahl der Messergebnisse	11
Anzahl der Ausreißer	-
Mittelwert	3464
Median	3403
Robuster Mittelwert (Xpt)	3429
Robuste Standardabweichung (S*)	222
Anzahl mit 2 Wiederholmessungen	11
Wiederholstandardabweichung (S_r)	82 , 5
Variationskoeffizient (VK _r)	2,38%
	285
Variationskoeffizient (VK _R)	8,23%
Zielkenndaten:	
Zielstandardabweichung $\sigma_{P}t$	240
Zielstandardabweichung (zur Information)	114
Untere Grenze des Zielbereichs	2948
Obere Grenze des Zielbereichs	3909
Quotient S*/opt	0,92
Standardunsicherheit U(Xpt)	83,6
Ergebnisse im Zielbereich	10
Prozent im Zielbereich	91%

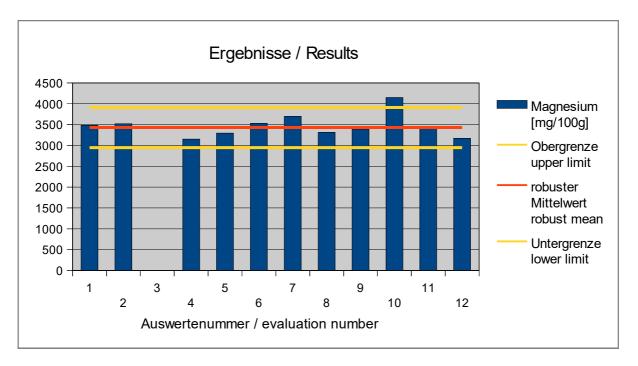


Abb. / Fig. 13: Ergebnisse Magnesium / Results Magnesium

Auswerte- nummer	Magnesium [mg/100g]	Abweichung [mg/100g]	z-Score	z-Score	Hinweis
Evaluation number		Deviation [mg/100g]	(o pt)	(Info)	Remark
1	3481	52	0,22	0,46	
2	3521	92	0,38	0,81	
3					
4	3150	-279	-1,2	-2,4	
5	3297	-132	-0 , 55	-1,2	
6	3529	100	0,42	0,88	
7	3699	270	1,1	2,4	
8	3313	-116	-0,48	-1,0	
9	3391	-38	-0,16	-0,33	
10	4150	721	3,0	6,3	
11	3403	-26	-0,11	-0,22	
12	3170	-259	-1,1	-2,3	

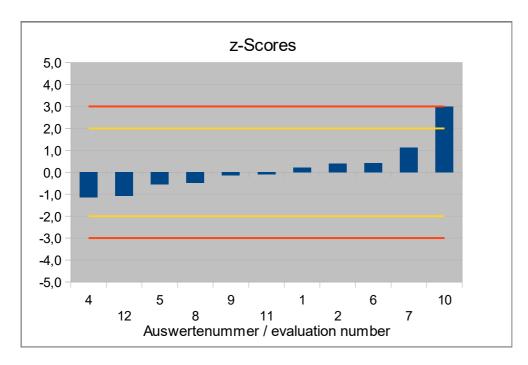


Abb. / Fig. 14: z-Scores Magnesium

4.8 Mn - Mangan in mg/100g

Kenndaten	
Anzahl der Messergebnisse	12
Anzahl der Ausreißer	0
Mittelwert	40,1
Median	40,5
Robuster Mittelwert (Xpt)	40,1
Robuste Standardabweichung (S*)	2,72
Anzahl mit 2 Wiederholmessungen	12
Wiederholstandardabweichung (S_r)	1,05
Variationskoeffizient (VK _r)	2,63%
	2,49
Variationskoeffizient (VK _R)	6,21%
Zielkenndaten:	
Zielstandardabweichung $\sigma_{P}t$	2,60
Zielstandardabweichung (zur	5,33
Information)	·
Untere Grenze des Zielbereichs	34,9
Obere Grenze des Zielbereichs	45,3
Quotient S*/opt	1,0
Standardunsicherheit U(Xpt)	0,981
Ergebnisse im Zielbereich	12
Prozent im Zielbereich	100%

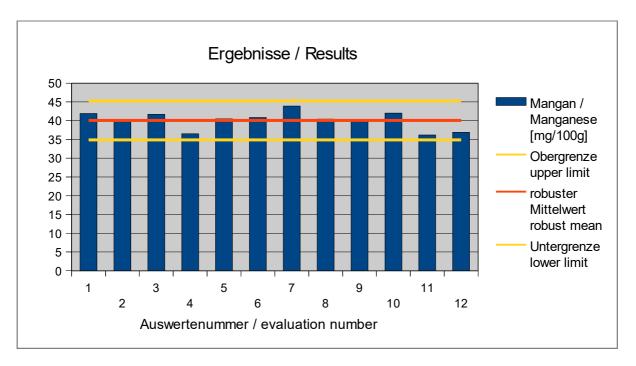


Abb. / Fig. 15: Ergebnisse Mangan / Results Manganese

Auswerte- nummer	Mangan / Manganese	Abweichung [mg/100g]	z-Score	z-Score	Hinweis
Evaluation number	[mg/100g]	Deviation [mg/100g]	(σ_{pt})	(Info)	Remark
1	41,9	1,84	0,71	0,35	
2	40,1	0,04	0,01	0,01	
3	41,7	1,64	0,63	0,31	
4	36 , 5	-3,56	-1,4	-0,67	
5	40,5	0,44	0,17	0,08	
6	40,9	0,79	0,31	0,15	
7	43,9	3,84	1,5	0,72	
8	40,4	0,37	0,14	0,07	
9	39 , 7	-0,36	-0,14	-0,07	
10	42,0	1,94	0,75	0,37	
11	36,2	-3,86	-1,5	-0,72	
12	36,9	-3,16	-1,2	-0,59	

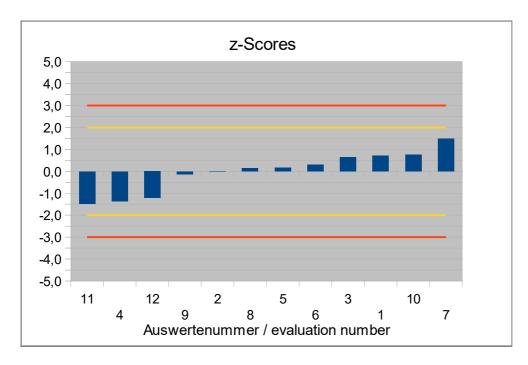


Abb. / Fig. 16: z-Scores Mangan / Manganese

4.9 Mo - Molybdän in µg/100g

Kenndaten	
Anzahl der Messergebnisse	11
Anzahl der Ausreißer	0
Mittelwert	1210
Median	1187
Robuster Mittelwert (Xpt)	1200
Robuste Standardabweichung (S*)	126
Anzahl mit 2 Wiederholmessungen	11
Wiederholstandardabweichung (S_r)	57 , 0
Variationskoeffizient (VK _r)	4,71%
	138
Variationskoeffizient (VK _R)	11,4%
Zielkenndaten:	
Zielstandardabweichung $\sigma_{\!P} t$	132
Zielstandardabweichung (zur	246
Information) Untere Grenze des Zielbereichs	936
Obere Grenze des Zielbereichs	1464
Quotient S*/opt	0,95
Standardunsicherheit U(Xpt)	47,5
Ergebnisse im Zielbereich	10
Prozent im Zielbereich	91%

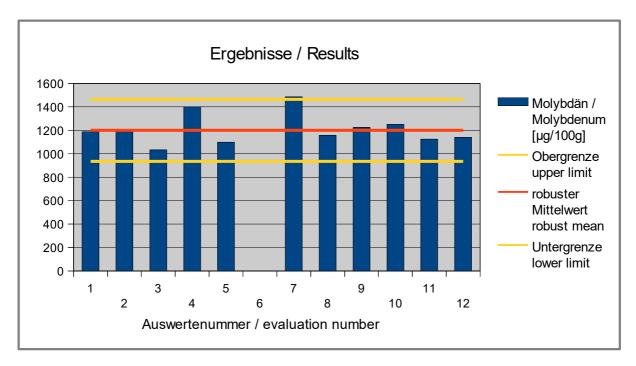


Abb. / Fig. 17: Ergebnisse Molybdän / Results Molybdenum

Auswerte- nummer	Molybdän / Molybdenum	Abweichung [µg/100g]	z-Score	z-Score	Hinweis
Evaluation number	[µg/100g]	Deviation [μg/100g]	(σ_{pt})	(Info)	Remark
1	1187	-13	-0,10	-0,05	
2	1203	3,1	0,02	0,01	
3	1033	-167	-1,3	-0,68	
4	1400	200	1,5	0,82	
5	1099	-101	-0,76	-0,41	
6					
7	1486	286	2,2	1,2	
8	1159	-41	-0,31	-0,17	
9	1224	24	0,18	0,10	
10	1250	50	0,38	0,20	
11	1125	-75	-0,57	-0,30	
12	1140	-60	-0,45	-0,24	

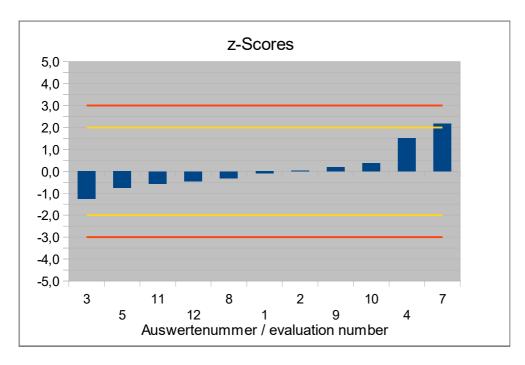


Abb. / Fig. 18: z-Scores Molybdän / Molybdenum

4.10 P - Phosphor in mg/100g

<u>Vergleichsuntersuchung</u> / <u>Proficiency Test</u>

Kenndaten	
Anzahl der Messergebnisse	10
Anzahl der Ausreißer	-
Mittelwert	1593
Median	1743
Robuster Mittelwert (Xpt)	1732
Robuste Standardabweichung (S*)	93,0
Anzahl mit 2 Wiederholmessungen	9
Wiederholstandardabweichung (S_r)	40,1
Variationskoeffizient (VK _r)	2,30%
	76,2
Variationskoeffizient (VK _R)	4,36%
Zielkenndaten:	
Zielstandardabweichung $\sigma_{P}t$	63,8
Zielstandardabweichung (zur	130
Information)	
Untere Grenze des Zielbereichs	1605
Obere Grenze des Zielbereichs	1860
Quotient S*/opt	1,5
Standardunsicherheit U(Xpt)	<i>36,</i> 7
Ergebnisse im Zielbereich	9
Prozent im Zielbereich	90%

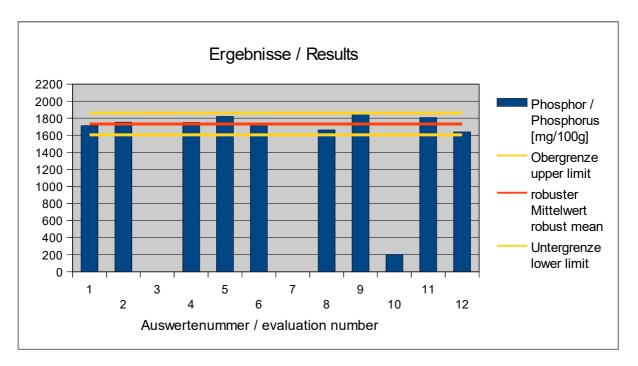


Abb. / Fig. 19: Ergebnisse Phosphor / Results Phosphorus

Ergebnisse der Teilnehmer: Results of Participants:

Auswerte- nummer	Phosphor / Phosphorus	Abweichung [mg/100g]	z-Score	z-Score	Hinweis
Evaluation number	[mg/100g]	Deviation [mg/100g]	(σ_{pt})	(Info)	Remark
1	1713	-19	-0,30	-0,15	
2	1753	21	0,33	0,16	
3					
4	1750	18	0,28	0,14	
5	1821	89	1,4	0,69	
6	1736	3,8	0,06	0,03	
7					
8	1662	-70	-1,1	-0,54	
9	1847	115	1,8	0,89	
10	202	-1530	-24	-12	
11	1806	74	1,2	0,57	
12	1640	-92	-1,4	-0,71	

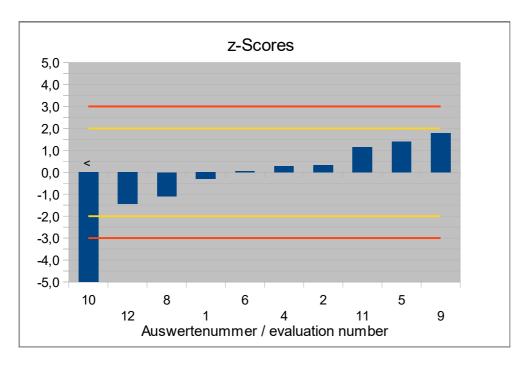


Abb. / Fig. 20: z-Scores Phosphor / Phosphorus

4.11 Se - Selen in $\mu g/100g$

<u>Vergleichsuntersuchung</u> / <u>Proficiency Test</u>

Kenndaten	
Anzahl der Messergebnisse	10
Anzahl der Ausreißer	0
Mittelwert	2084
Median	1991
Robuster Mittelwert (Xpt)	2058
Robuste Standardabweichung (S*)	257
Anzahl mit 2 Wiederholmessungen	10
Wiederholstandardabweichung (S_r)	45,3
Variationskoeffizient (VK _r)	2,18%
	285
Variationskoeffizient (VK _R)	13,7%
Zielkenndaten:	
Zielstandardabweichung $\sigma_{\!P} t$	209
Zielstandardabweichung (zur Information)	151
Untere Grenze des Zielbereichs	1640
Obere Grenze des Zielbereichs	2476
Quotient S*/opt	1,2
Standardunsicherheit U(Xpt)	102
Ergebnisse im Zielbereich	9
Prozent im Zielbereich	90%

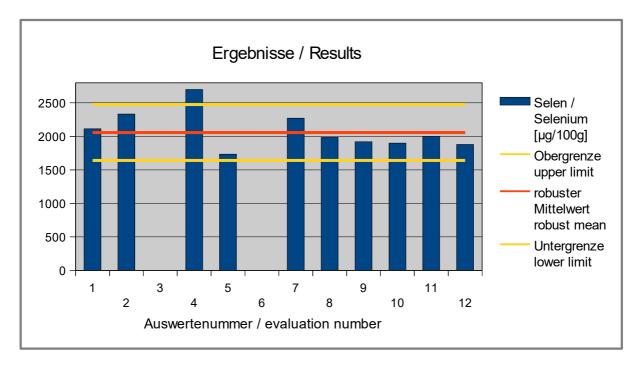


Abb. / Fig. 21: Ergebnisse Selen / Results Selenium

Ergebnisse der Teilnehmer: Results of Participants:

Auswerte- nummer	Selen / Selenium	Abweichung [µg/100g]	z-Score	z-Score	Hinweis
Evaluation number	[µg/100g]	Deviation [µg/100g]	(σ_{pt})	(Info)	Remark
1	2113	55	0,26	0,37	
2	2333	275	1,3	1,8	
3					
4	2700	642	3,1	4,3	
5	1735	-323	-1,5	-2,1	
6					
7	2272	214	1,0	1,4	
8	1984	-74	-0,35	-0,49	
9	1920	-138	-0,66	-0,92	
10	1900	-158	-0,76	-1,0	
11	1998	-60	-0,29	-0,40	
12	1880	-178	-0,85	-1,2	

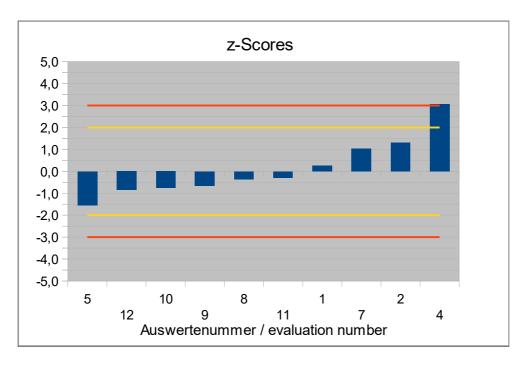


Abb. / Fig. 22: z-Scores Selen / Selenium

4.12 Zn - Zink in mg/100g

<u>Vergleichsuntersuchung</u> / <u>Proficiency Test</u>

Kenndaten	
Anzahl der Messergebnisse	12
Anzahl der Ausreißer	0
Mittelwert	317
Median	316
Robuster Mittelwert (Xpt)	317
Robuste Standardabweichung (S*)	26,8
Anzahl mit 2 Wiederholmessungen	12
Wiederholstandardabweichung (S_r)	6,43
Variationskoeffizient (VK _r)	2,03%
	24,6
$Variationskoeffizient (VK_R)$	7,74%
Zielkenndaten:	
Zielstandardabweichung $\sigma_{\!P} t$	21,1
Zielstandardabweichung (zur	15,1
Information)	·
Untere Grenze des Zielbereichs	275
Obere Grenze des Zielbereichs	359
Quotient S*/opt	1,3
Standardunsicherheit U(Xpt)	9,68
Ergebnisse im Zielbereich	12
Prozent im Zielbereich	100%

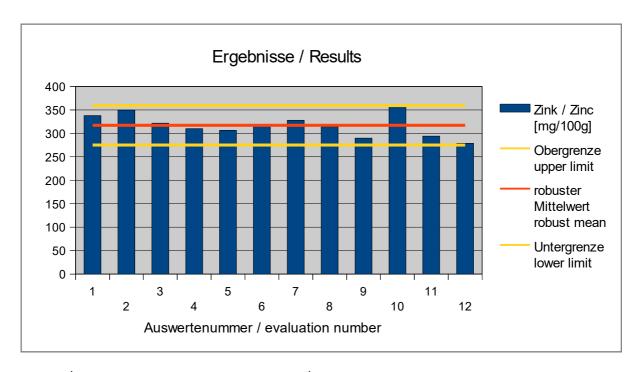


Abb. / Fig. 23: Ergebnisse Zink / Results Zinc

Ergebnisse der Teilnehmer: Results of Participants:

Auswerte- nummer	Zink / Zinc [mg/100g]	Abweichung [mg/100g]	z-Score	z-Score	Hinweis
Evaluation number		Deviation [mg/100g]	(σ_{pt})	(Info)	Remark
1	338	20,9	1,0	1,4	
2	350	32,6	1,5	2,2	
3	322	4,5	0,21	0,30	
4	310	-7,1	-0,34	-0,47	
5	307	-10,6	-0,50	-0,70	
6	317	-0,1	-0,01	-0,01	
7	328	10,9	0,52	0,72	
8	314	-3,0	-0,14	-0,20	
9	290	-27,1	-1,3	-1,8	
10	360	42,9	2,0	2,8	
11	294	-23,1	-1,1	-1,5	
12	279	-38,1	-1,8	-2,5	

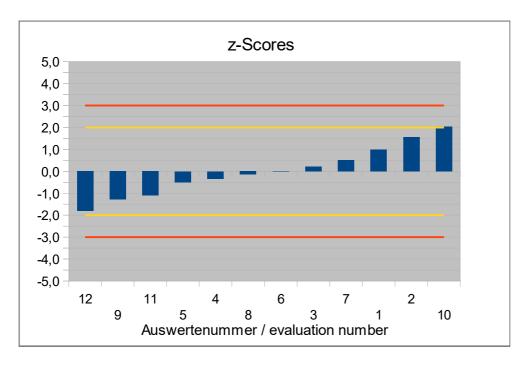


Abb. / Fig. 24: z-Scores Zink / Zinc

4.13 z-Scores der Teilnehmer: Übersichtstabelle

Auswerte- nummer	В	Са	Cr	Cu	Fe	K	Mg	Mn	Мо	Р	Se	Zn
1		0,01	0,30	2,2	-1,0	-0,85	0,22	0,71	-0,10	-0,30	0,26	1,0
2	0,58	0,70	-0,04	-0,49	-0,24	1,0	0,38	0,01	0,02	0,33	1,3	1,5
3			-2,7	-0,42	2,0			0,63	-1,3			0,21
4		-0,15	0,47	1,0	-0,42	0,71	-1,2	-1,4	1,5	0,28	3,1	-0,34
5	-1,3	-0,93	-0,27	-0,28	1,1	-0,13	-0,55	0,17	-0,76	1,4	-1,5	-0,50
6		-0,56	0,36		0,47	0,42	0,42	0,31		0,06		-0,01
7	1,4	2,3	1,5	1,4	1,4	0,73	1,1	1,5	2,2		1,0	0,52
8	0,73	-0,53	0,04	-0,08	-0,07	-0,75	-0,48	0,14	-0,31	-1,1	-0,35	-0,14
9	0,11	-0,17	0,10	0,87	-0,48	-0,16	-0,16	-0,14	0,18	1,8	-0,66	-1,3
10	-0,26	8,3	-2,1	-5,3	-0,11	0,71	3,0	0,75	0,38	-24	-0,76	2,0
11	-1,2	-0,54	-0,53	-0,81	-0,67	-1,2	-0,11	-1,5	-0,57	1,2	-0,29	-1,1
12		-2,1	1,9	-1,2	-2,0	-0,43	-1,1	-1,2	-0,45	-1,4	-0,85	-1,8

Bewertung des z-Scores / valuation of z-score (DIN ISO 13528:2009-01):

^{-2 ≤} z-score ≤ 2 erfolgreich / successful (in green)

^{-2 &}gt; z-score > 2 "Warnsignal" / warning signal (in yellow)

^{-3 &}gt; z-score > 3 "Eingriffssignal" / action signal (in red)

5. Dokumentation

Hinweis: Angaben in englischer Sprache wurden von DLA nach bestem Wissen ins Deutsche übersetzt (ohne Gewähr der Richtigkeit).

5.1 Angaben der Teilnehmer

5.1.1 Primärdaten

Parameter	Teilnehmer	Einheit	Proben-Nr. I	Proben-Nr. II	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis I	Ergebnis II	Bestim- mungsgren- ze	Inkl. WF	Wiederfin- dungsrate [%]
	1	mg/100g									
	2	mg/100g	13	17	03.08.21	65,19	64,26	66,13	keine	ja	80-120
	3	mg/100g			-	-	-	-	-	-	-
	4	mg/100g	14	16	N/A	N/A	N/A	N/A			
	5	mg/100g	12	18	29.07.21	58	58	58	0,3	nein	
B – Bor /	6	mg/100g	3	27							
Boron	7	mg/100g	4	26	14.07 12.08.21	68,2	68,72	67,69	0,1	ja	-
	8	mg/100g			14.07.21	65,75	66,8	64,7	1	ja	85 - 115
	9	mg/100g			18.08.21	63,4	63,7	63,1	1mg/100g	nein	
	10	mg/100g	10	20	25.08.21	62	59	64		nein	
	11	mg/100g	7	23	18.08.21	58,3	58,8	57,9	1	nein	
	12	mg/100g	9	21							

Parameter	Teilnehmer	Einheit	Proben-Nr. I	Proben-Nr. II	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis I	Ergebnis II	Bestim- mungsgren- ze	Inkl. WF	Wiederfin- dungsrate [%]
	1	mg/100g			14.07.21	5326	5257	5395		nein	
	2	mg/100g	13	17	03.08.21	5441,2	5288,6	5593,7	keine	ja	80-120
	3	mg/100g			-	-	-	-	-	-	-
	4	mg/100g	14	16	12.08.21	5300 mg	5200 mg	5400 mg			
	5	mg/100g	12	18	28.07.21	5170,5	5241	5100	25	nein	
	6	mg/100g	3	27	25.08.21	5231	5124	5338		nein	
Ca – Calcium	7	mg/100g	4	26	14.07 12.08.21	5706	5675,83	5735,83	0,4	ja	-
	8	mg/100g			17.07.21	5236,34	5220,44	5252,23	3,52	ja	85 - 115
	9	mg/100g			27.07.21	5296	5343	5248	2,1 mg/100g	nein	
	10	mg/100g	10	20	25.08.21	6700	6400	7000		nein	
	11	mg/100g	7	23	18.08.21	5235	5210	5260	1	nein	
	12	mg/100g	9	21	27.07.21	4970	4970	4970	2,5	nein	/

Parameter	Teilnehmer	Einheit	Proben-Nr. I	Proben-Nr. II	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis I	Ergebnis II	Bestim- mungsgren- ze	Inkl. WF	Wiederfin- dungsrate [%]
	1	µg/100g			14.07.21	1474	1458	1490		nein	
	2	µg/100g	13	17	03.08.21	1422	1419,7	1424,3	3	ja	80-120
	3	µg/100g			17.08.21	1022,3	1046,3	998,3	20	nein	-
	4	µg/100g	14	16	12.08.21	1500 ug	1500 ug	1500 ug			
	5	µg/100g	12	18	29.07.21	1387	1372	1402	100	nein	
Cr –	6	µg/100g	3	27	25.08.21	1484	1479	1489		nein	
Chrom / Chromium	7	µg/100g	4	26	14.07 12.08.21	1654	1637,78	1669,88	20	ja	-
	8	µg/100g			14.07.21	1434	1432	1436	51,4	ja	85 - 115
	9	µg/100g			20.08.21	1443	1443	1442	10 µg/100 g	nein	
	10	µg/100g	10	20	25.08.21	1100	1100	1100		nein	
	11	µg/100g	7	23	18.08.21	1347	1350	1343	8	nein	
	12	µg/100g	9	21	27.07.21	1720	1730	1710	10	nein	/

Parameter	Teilnehmer	Einheit	Proben-Nr. I	Proben-Nr. II	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis I	Ergebnis II	Bestim- mungsgren- ze	Inkl. WF	Wiederfin- dungsrate [%]
	1	mg/100g			14.07.21	49,9	49,4	50,3		nein	
	2	mg/100g	13	17	03.08.21	42,41	42,5	42,32	0	ja	80-120
	3	mg/100g			20.08.21	42,6	43,8	41,4	5	nein	-
	4	mg/100g	14	16	12.08.21	46.5 mg	47 mg	46 mg			
	5	mg/100g	12	18	29.07.21	43	43	43	0,2	nein	
	6	mg/100g	3	27	25.08.21	467	470	464		nein	
Cu – Kupfer / Copper		mg/100g	4	26	14.07 12.08.21	47,7	47,32	48,05	0,02	ja	-
	8	mg/100g			14.07.21	43,55	43,06	44,05	0,04	ja	85 - 115
	9	mg/100g			18.08.21	46,2	46,4	46,1	0,3 mg/100g	nein	
	10	mg/100g	10	20	25.08.21	29	29	29		nein	
	11	mg/100g	7	23	18.08.21	41,5	41,8	41,2	0	nein	
	12	mg/100g	9	21	27.07.21	40,5	40,7	40,4	0,01	nein	/

Parameter	Teilnehmer	Einheit	Proben-Nr. I	Proben-Nr. II	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis I	Ergebnis II	Bestim- mungsgren- ze	Inkl. WF	Wiederfin- dungsrate [%]
	1	mg/100g			14.07.21	331,2	327,4	335		nein	
	2	mg/100g	13	17	03.08.21	343	337,8	350,19	0,02	ja	80-120
	3	mg/100g			19.08.21	378,7	386,9	370,5	5	nein	-
	4	mg/100g	14	16	12.08.21	340 mg	340 mg	340 mg			
	5	mg/100g	12	18	26.07.21	365	364	366	6	nein	
	6	mg/100g	3	27	25.08.21	354,5	353	356		nein	
Fe – Eisen / Iron	7	mg/100g	4	26	14.07 12.08.21	369	364,42	372,82	0,02	ja	-
	8	mg/100g			14.07.21	345,63	332,33	358,94	0,18	ja	85 - 115
	9	mg/100g			18.08.21	339	334	345	0,3 mg/100g	nein	
	10	mg/100g	10	20	25.08.21	345	350	340		nein	
	11	mg/100g	7	23	18.08.21	336	331	342	0,05	nein	
	12	mg/100g	9	21	27.07.21	315	315	316	0,01	nein	/

Parameter	Teilnehmer	Einheit	Proben-Nr. I	Proben-Nr. II	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis I	Ergebnis II	Bestim- mungsgren- ze	Inkl. WF	Wiederfin- dungsrate [%]
	1	mg/100g			14.07.21	1890	1867	1912		nein	
	2	mg/100g	13	17	03.08.21	2019,5	1979,7	2059,3	0,7	ja	80-120
	3	mg/100g			-	-	-	-	-	-	-
	4	mg/100g	14	16	12.08.21	2000 mg	2000 mg	2000 mg			
	5	mg/100g	12	18	28.07.21	1941	1939	1943	25	nein	
K –	6	mg/100g	3	27	25.08.21	1980	1952	2007		nein	
Kalium / Potassium	7	mg/100g	4	26	14.07 12.08.21	2002	2000	2003,33	2	ja	-
Fotassium	8	mg/100g			14.07.21	1897,08	1842,18	1951,99	9,84	ja	85 - 115
	9	mg/100g			27.07.21	1939	1948	1929	4,7 mg/100g	nein	
	10	mg/100g	10	20	25.08.21	2000	2000	2000		nein	
	11	mg/100g	7	23	18.08.21	1864	1845	1882	1	nein	
	12	mg/100g	9	21	27.07.21	1920	1910	1930	2,5	nein	/

Parameter	Teilnehmer	Einheit	Proben-Nr. I	Proben-Nr. II	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis I	Ergebnis II	Bestim- mungsgren- ze	Inkl. WF	Wiederfin- dungsrate [%]
	1	mg/100g			14.07.21	3481	3454	3508		nein	
	2	mg/100g	13	17	03.08.21	3521,1	3460,7	3581,5	0,09	ja	80-120
	3	mg/100g			-	-	-	-	-	-	-
	4	mg/100g	14	16	12.08.21	3150 mg	3200 mg	3100 mg			
	5	mg/100g	12	18	28.07.21	3296,5	3251	3342	25	nein	
	6	mg/100g	3	27	25.08.21	3529	3547	3510		nein	
Mg – Magnesium	7	mg/100g	4	26	14.07 12.08.21	3699	3665,83	3732,5	0,4	ja	-
	8	mg/100g			14.07.21	3312,72	3367,23	3258,21	0,63	ja	85 - 115
	9	mg/100g			27.07.21	3391	3425	3356	3,8 mg/100g	nein	
	10	mg/100g	10	20	25.08.21	4150	4000	4300		nein	
	11	mg/100g	7	23	18.08.21	3403	3390	3423	1	nein	
	12	mg/100g	9	21	27.07.21	3170	3180	3160	0,25	nein	1

Parameter	Teilnehmer	Einheit	Proben-Nr. I	Proben-Nr. II	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis I	Ergebnis II	Bestim- mungsgren- ze	Inkl. WF	Wiederfin- dungsrate [%]
	1	mg/100g			14.07.21	41,9	41,4	42,5		nein	
	2	mg/100g	13	17	03.08.21	40,09	40,49	39,69	0	ja	80-120
	3	mg/100g			23.08.21	41,7	43,2	40,2	2,5	nein	_
	4	mg/100g	14	16	12.08.21	36.5 mg	37 mg	36 mg			
	5	mg/100g	12	18	29.07.21	40,5	39	42	0,1	nein	
Mn –	6	mg/100g	3	27	25.08.21	40,85	41,1	40,6		nein	
Mangan / Manganese	7	mg/100g	4	26	14.07 12.08.21	43,9	43,72	44,08	0,02	ja	-
Manganese	8	mg/100g			14.07.21	40,43	39,47	41,39	0,05	ja	85 - 115
	9	mg/100g			27.07.21	39,7	39,4	39,9	1,1 mg/100g	nein	
	10	mg/100g	10	20	25.08.21	42	41	42		nein	
	11	mg/100g	7	23	18.08.21	36,2	35,8	36,5	0,05	nein	
	12	mg/100g	9	21	27.07.21	36,9	37	36,9	0,01	nein	/

Parameter	Teilnehmer	Einheit	Proben-Nr. I	Proben-Nr. II	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis I	Ergebnis II	Bestim- mungsgren- ze	Inkl. WF	Wiederfin- dungsrate [%]
	1	µg/100g			14.07.21	1187	1162	1212		nein	
	2	µg/100g	13	17	03.08.21	1202,8	1226,6	1179	2	ja	80-120
	3	µg/100g			11.08.21	1032,8	955,7	1109,8	20	nein	-
	4	µg/100g	14	16	12.08.21	1400 ug	1400 ug	1400 ug			
	5	µg/100g	12	18	29.07.21	1099	1120	1078	200	nein	
Mo – Mo-	6	µg/100g	3	27							
lybdän /Mo- lybdenum	7	µg/100g	4	26	14.07 12.08.21	1486	1460,94	1511,47	4	ja	-
	8	µg/100g			14.07.21	1158,5	1209	1108	73,3	ja	85 - 115
	9	µg/100g			20.08.21	1224	1190	1258	20 µg/100g	nein	
	10	µg/100g	10	20	25.08.21	1250	1300	1200		nein	
	11	µg/100g	7	23	18.08.21	1125	1070	1180	5	nein	
	12	µg/100g	9	21	27.07.21	1140	1160	1120	2,5	nein	/

Parameter	Teilnehmer	Einheit	Proben-Nr. I	Proben-Nr. II	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis I	Ergebnis II	Bestim- mungsgren- ze	Inkl. WF	Wiederfin- dungsrate [%]
	1	mg/100g			14.07.21	1713	1702	1724		nein	
	2	mg/100g	13	17	03.08.21	1753,4	1723,6	1783,2	keine	ja	80-120
	3	mg/100g			-	-	-	-	-	-	-
	4	mg/100g	14	16	12.08.21	1750 mg	1800 mg	1700 mg			
	5	mg/100g	12	18	29.07.21	1821	1794	1848	1	nein	
P – Phos-	6	mg/100g	3	27	25.08.21	1736	1732	1739		nein	
phor / Phosphorus	7	mg/100g	4	26							
1 1103priorus	8	mg/100g			14.07.21	1662,46	1610,14	1714,79	1,93	ja	85 - 115
	9	mg/100g			24.08.21	1847	1837	1857	5 mg/100g	nein	
	10	mg/100g	10	20	25.08.21	202	204	200		nein	
	11	mg/100g	7	23	18.08.21	1806	1818	1795	1	nein	
	12	mg/100g	9	21	27.07.21	1640	1630	1640	2,5	nein	1

Parameter	Teilnehmer	Einheit	Proben-Nr. I	Proben-Nr. II	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis I	Ergebnis II	Bestim- mungsgren- ze	Inkl. WF	Wiederfin- dungsrate [%]
	1	µg/100g			14.07.21	2113	2085	2142		nein	
	2	µg/100g	13	17	03.08.21	2333,3	2278,4	2388,1	8	ja	80-120
	3	µg/100g			-	-	-	-	-	-	-
	4	µg/100g	14	16	12.08.21	2700 ug	2700 ug	2700 ug			
	5	µg/100g	12	18	29.07.21	1735	1801	1669	1000	nein	
Se –	6	µg/100g	3	27							
Selen / Se- lenium	7	µg/100g	4	26	14.07 12.08.21	2272	2249,62	2295,02	4	ja	-
	8	µg/100g			14.07.21	1984,15	1960	2008,3	4,9	ja	70 -130
	9	µg/100g			16.08.21	1920	1950	1890	2 µg/100g	nein	
	10	µg/100g	10	20	25.08.21	1900	1900	1900		nein	
	11	µg/100g	7	23	18.08.21	1998	2000	1995	5	nein	
	12	µg/100g	9	21	27.07.21	1880	1870	1890	10	nein	/

Parameter	Teilnehmer	Einheit	Proben-Nr. I	Proben-Nr. II	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis I	Ergebnis II	Bestim- mungsgren- ze	Inkl. WF	Wiederfin- dungsrate [%]
	1	mg/100g			14.07.21	338	334,6	341,5		nein	
	2	mg/100g	13	17	03.08.21	349,74	344,13	355,35	0,02	ja	80-120
	3	mg/100g			18.08.21	321,6	325,4	317,8	1	nein	-
	4	mg/100g	14	16	12.08.21	310 mg	310 mg	310 mg			
	5	mg/100g	12	18	29.07.21	306,5	307	306	0,2	nein	
	6	mg/100g	3	27	25.08.21	317	316	319		nein	
Zn – Zink / Zinc	7	mg/100g	4	26	14.07 12.08.21	328	327,36	328,97	0,02	ja	-
	8	mg/100g			14.07.21	314,16	304,96	323,36	0,11	ja	85 - 115
	9	mg/100g			27.07.21	290	289	292	6,1 mg/100g	nein	
	10	mg/100g	10	20	25.08.21	360	350	370		nein	
	11	mg/100g	7	23	18.08.21	294	294	293	0,05	nein	
	12	mg/100g	9	21	27.07.21	279	278	279	0,03	nein	/

5.1.2 Analytische Methoden

Parameter	Teil- nehmer	Methodenangabe, wie in Prüfbericht / Norm / Literatur	Homogenisierung	Einwaage	Aufschluss: Methode	Aufschluss: Lösung	Kalibrierverfahren / Referenzmaterial	Methode akkreditiert nach ISO/IEC 17025	Sonstige Hinweise
	1								
		Quantitative Analyse ICP-MS	keine	10 2a	Mikorwellendruck- aufschluss	HNO3 (3mL), HCl (0.5mL)	externe Kalibration und Referenzwasser	nein	
	3	-	-	-	-	-	-	-	-
	4								
	5	MI_032_2021_Rev.2	ja	0,1g	Ultrawave	HNO3 + H2O2	Ultra IQC-026	nein	
	6								
B – Bor / Boron	· /	ASU L 00.00-144 (modifi- ziert) 2019-07	nein	10 5 a	Mikrowellen-Hoch- druck-Aufschluss	1mL H2O + 2mL HNO3 + 1mL H2O2 + 1mL HCI	externe Standard-kali- brierung	ja	
	8	ICP_AES	OK	0,5	Wärmeblock	HNO3 +H2O2		nein	/
	9	ICP-OES	ja	0,4 g	Mikrowelle	H2O/HNO3/HCI	lineare Regression	ja	
	10	ICP-MS		1 g	erhitzen	Wasser	Externer Standardrei- he	nein	
	1 11	DIN EN ISO 11885, ICP- OES: 2009-09	GM 200; Glasbehäl- ter + Titanmesser	0,2 g	Mikrowelle	HNO3	extern	ja	
	12								

Parameter	Teil- nehmer	Methodenangabe, wie in Prüfbericht / Norm / Literatur	Homogenisierung	Einwaage	Aufschluss: Methode	Aufschluss: Lösung	Kalibrierverfahren / Referenzmaterial	Methode akkreditiert nach ISO/IEC 17025	Sonstige Hinweise
	1	AA53v21,ICP-MS			ASU 00.00-19/1			ja	
	2	Quantitative Analyse ICP-MS	keine	0.2g	Mikorwellendruckaufsc hluss	HNO3 (3mL), HCI (0.5mL)	externe Kalibration und Referenzwasser	nein	
	3	-	-	-	-	-	-	-	-
	4	ICP-OES mit Säureaufschluss		Probe 14: 3.0791 9; Probe 16: 3.0934 g			Spex Certiprep	ja	
	5	MI_032_2021_Rev.2	ja	0,1g	Ultrawave	HNO3 + H2O2	Ultra IAA-220	ja	
	6	ICP-OES	Durchmischung	0,2 g	Mikrowelle	HNO3	extern	ja	
Ca –	7	ASU L 00.00-144 (modifiziert) 2019-07	nein	0,5 g	Mikrowellen- Hochdruck-Aufschluss	1mL H2O + 2mL HNO3 + 1mL H2O2 + 1mL HCl	externe Standard- kalibrierung	ja	
Calcium	8	ICP_AES	OK	0,5	Wärmeblock	AQ regia		ja	1
	9	Hausmethode - lonenchromatographie	ja	0,6 g	wässrige Extraktion	H2O/HNO3	lineare Regression	ja	
	10	ICP-MS		1 g	erhitzen	\/\/accer	Externer Standardreihe	nein	
	11	§ 64 LFGB L 00.00-144, ICP-OES: 2019-07	GM 200; Glasbehälter + Titanmesser	0,2 g	Mikrowelle	HNO3	extern	ja	
		ASU L 00.00-19/3, 2004-07	kompletter Beutelinhalt, IKA Analysenmühle	0,5 g	Mikrowelle	Salpetersäure, Wasserstoffperoxid	externe Kalibrierung/ Elementstandardlösun gen rückführbar auf NIST	ja	

Parameter	Teil- nehmer	Methodenangabe, wie in Prüfbericht / Norm / Literatur	Homogenisierung	Einwaage	Aufschluss: Methode	Aufschluss: Lösung	Kalibrierverfahren / Referenzmaterial	Methode akkreditiert nach ISO/IEC 17025	Sonstige Hinweise
	1	AA53v21,ICP-MS			ASU 00.00-19/1			ja	
	2	Quantitative Analyse ICP-MS	keine	0.2g	Mikorwellendruckaufsc hluss	HNO3 (3mL), HCl (0.5mL)	externe Kalibration und Referenzwasser	ja	
	3	DIN 38 406 - E7 - 2 + ASU L 00.00-19/3:2004-07	ja	0,25g	Mikrowellendruckaufsc hluss gem. BLS SOP 3.001	5ml HNO3 65% + 1ml H2O2 30%	Linear	ja	-
	1 1	ICP-OES mit Säureaufschluss		Probe 14: 3.0791 9; Probe 16: 3.0934 g			Spex Certiprep	ja	
	5	MI_032_2021_Rev.2	ja	0,1g	Ultrawave	HNO3 + H2O2	Ultra IQC-026	nein	
Cr – Chrom	6	ICP-OES	Durchmischung	0,2 g	Mikrowelle	HNO3	extern	ja	
/ Chromi- um	7	ASU L 00.00-144 (modifiziert) 2019-07	nein	0,5 g	Mikrowellen- Hochdruck-Aufschluss	\square	externe Standard- kalibrierung	ja	
	8	ICP_AES	OK	0,5	Wärmeblock	HNO3 +H2O2		ja	/
	9	ICP-MS	ja	0,4 g	Mikrowelle	H2O/HNO3/HCI	lineare Regression	ja	
	10	ICP-MS		1 g	erhitzen	Wasser	Externer Standardreihe	nein	
		DIN EN 15763, mod., ICP- MS: 2010-04	GM 200; Glasbehälter + Titanmesser	0,2 g	Mikrowelle		extern	ja	
	172	ASU L 00.00-19/3, 2004-07	kompletter Beutelinhalt, IKA Analysenmühle	0,5 g	Mikrowelle	Salpetersäure, Wasserstoffperoxid	externe Kalibrierung/ Elementstandardlösun gen rückführbar auf NIST	ja	

Parameter	Teil- nehmer	Methodenangabe, wie in Prüfbericht / Norm / Literatur	Homogenisierung	Einwaage	Aufschluss: Methode	Aufschluss: Lösung	Kalibrierverfahren / Referenzmaterial	Methode akkreditiert nach ISO/IEC 17025	Sonstige Hinweise
	1	AA53v21,ICP-MS			ASU 00.00-19/1			ja	
	2	Quantitative Analyse ICP-MS	keine	0.2g	Mikorwellendruckaufsc hluss	HNO3 (3mL), HCl (0.5mL)	externe Kalibration und Referenzwasser	ja	
	3	DIN 38 406 - E7 - 1 + ASU L 00.00-19/2	ja	0,25g	Mikrowellendruckaufsc hluss gem. BLS SOP 3.001	5ml HNO3 65% + 1ml H2O2 30%	Linear	ja	-
	4	ICP-OES mit Säureaufschluss		Probe 14: 3.0791 9; Probe 16: 3.0934 g			Spex Certiprep	ja	
	5	MI_032_2021_Rev.2	ja	0,1g	Ultrawave	HNO3 + H2O2	Ultra IQC-026	nein	
C	6	ICP-OES	Durchmischung	0,2 g	Mikrowelle	HNO3	extern	ja	
Cu – Kup- fer / Cop- per	7	ASU L 00.00-144 (modifiziert) 2019-07	nein	0,5 g	Mikrowellen- Hochdruck-Aufschluss	1mL H2O + 2mL HNO3 + 1mL H2O2 + 1mL HCl	externe Standard- kalibrierung	ja	
	8	ICP_AES	OK	0,5	Wärmeblock	HNO3 +H2O2		ja	/
	9	ICP-OES	ja	0,4 g	Mikrowelle	H2O/HNO3/HCI	lineare Regression	ja	
	10	ICP-MS		1 g	erhitzen	Wasser	Externer Standardreihe	nein	
	11	DIN EN 15763, mod., ICP- MS: 2010-04	GM 200; Glasbehälter + Titanmesser	0,2 g	Mikrowelle	HNO3	extern	ja	
	12	ASU L 00.00-19/3, 2004-07	kompletter Beutelinhalt, IKA Analysenmühle	0,5 g	Mikrowelle	Salpetersäure,	externe Kalibrierung/ Elementstandardlösun gen rückführbar auf NIST	ja	

Parameter	Teil- nehmer	Methodenangabe, wie in Prüfbericht / Norm / Literatur	Homogenisierung	Einwaage	Aufschluss: Methode	Aufschluss: Lösung	Kalibrierverfahren / Referenzmaterial	Methode akkreditiert nach ISO/IEC 17025	Sonstige Hinweise
	1	AA53v21,ICP-MS			ASU 00.00-19/1			ja	
	2	Quantitative Analyse ICP-MS	keine	0.2g	Mikorwellendruckaufsc hluss	HNO3 (3mL), HCl (0.5mL)	externe Kalibration und Referenzwasser	ja	
	۱ ٦	DIN 38 406 - E32 - 4 + ASU L 00.00-19/2	ja	0,25g	Mikrowellendruckaufsc hluss gem. BLS SOP 3.001	5ml HNO3 65% + 1ml H2O2 30%	Linear	ja	-
	4	ICP-OES mit Säureaufschluss		Probe 14: 3.0791 9; Probe 16: 3.0934 g			Spex Certiprep	ja	
	5	MI_032_2021_Rev.2	ja	0,2g	Aufschlussblock	HNO3 + HCI	Ultra IQC-026	nein	
	6	ICP-OES	Durchmischung	0,2 g	Mikrowelle	HNO3	extern	ja	
Fe – Eisen / Iron	7	ASU L 00.00-144 (modifiziert) 2019-07	nein	0,5 g	Mikrowellen- Hochdruck-Aufschluss	14003 + 101 + 1202 + 11202 +	externe Standard- kalibrierung	ja	
	8	ICP_AES	OK	0,5	Wärmeblock	HNO3 +H2O2		ja	/
	9	ICP-OES	ja	0,4 g	Mikrowelle	H2O/HNO3/HCI	lineare Regression	ja	
	10	ICP-MS		1 g	erhitzen		Externer Standardreihe	nein	
	11	§ 64 LFGB L 00.00-144, ICP-OES: 2019-07	GM 200; Glasbehälter + Titanmesser	0,2 g	Mikrowelle	HNO3	extern	ja	
	1.7	ASU L 00.00-19/3, 2004-07	kompletter Beutelinhalt, IKA Analysenmühle	0,5 g	Mikrowelle	Salpetersäure, Wasserstoffperoxid	externe Kalibrierung/ Elementstandardlösun gen rückführbar auf NIST	ja	

Parameter	Teil- nehmer	Methodenangabe, wie in Prüfbericht / Norm / Literatur	Homogenisierung	Einwaage	Aufschluss: Methode	Aufschluss: Lösung	Kalibrierverfahren / Referenzmaterial	Methode akkreditiert nach ISO/IEC 17025	Sonstige Hinweise
	1	AA53v21,ICP-MS			ASU 00.00-19/1			ja	
	2	Quantitative Analyse ICP-MS	keine	0.2g	Mikorwellendruckaufsc hluss	(- //	externe Kalibration und Referenzwasser	ja	
	3	-	-	-	-	-	-	-	-
	4	ICP-OES mit Säureaufschluss		Probe 14: 3.0791 9; Probe 16: 3.0934 g			Spex Certiprep	ja	
	5	MI_032_2021_Rev.2	ja	0,1g	Ultrawave	HNO3 + H2O2	Ultra IAA-219	ja	
	6	ICP-OES	Durchmischung	0,2 g	Mikrowelle	HNO3	extern	ja	
K – Kalium / Potassi-	7	ASU L 00.00-144 (modifiziert) 2019-07	nein	0,5 g	Mikrowellen- Hochdruck-Aufschluss	1HNO3 + 1mI H2O2 + 1mI	externe Standard- kalibrierung	ja	
um	8	ICP_AES	OK	0,5	Wärmeblock	Königswasser		ja	/
	9	Hausmethode - lonenchromatographie	ja	0,6 g	wässrige Extraktion	H2O/HNO3	lineare Regression	ja	
	10	ICP-MS		1 g	erhitzen	Wasser	Externer Standardreihe	nein	
	11	§ 64 LFGB L 00.00-144, ICP-OES: 2019-07	GM 200; Glasbehälter + Titanmesser	0,2 g	Mikrowelle	HNO3	extern	ja	
	1 1ツ	ASU L 00.00-19/3, 2004-07	kompletter Beutelinhalt, IKA Analysenmühle	0,5 g	Mikrowelle	Salpetersäure, Wasserstoffperoxid	externe Kalibrierung/ Elementstandardlösun gen rückführbar auf NIST	ja	

Parameter	Teil- nehmer	Methodenangabe, wie in Prüfbericht / Norm / Literatur	Homogenisierung	Einwaage	Aufschluss: Methode	Aufschluss: Lösung	Kalibrierverfahren / Referenzmaterial	Methode akkreditiert nach ISO/IEC 17025	Sonstige Hinweise
	1	AA53v21,ICP-MS			ASU 00.00-19/1			ja	
	2	Quantitative Analyse ICP-MS	keine	0.2g	Mikorwellendruckaufsc hluss	HNO3 (3mL), HCI (0.5mL)	externe Kalibration und Referenzwasser	ja	
	3	-	-	-	-	-	-	-	-
	1 1	ICP-OES mit Säureaufschluss		Probe 14: 3.0791 9; Probe 16: 3.0934 g			Spex Certiprep	ja	
	5	MI_032_2021_Rev.2	ja	0,1g	Ultrawave	HNO3 + H2O2	Ultra IAA-212	ja	
	6	ICP-OES	Durchmischung	0,2 g	Mikrowelle	HNO3	extern	ja	
Mg – Ma-	/	ASU L 00.00-144 (modifiziert) 2019-07	nein	0,5 g	Mikrowellen- Hochdruck-Aufschluss	$1HN(1)^2 + 1m(1)^2(1)^2 + 1$	externe Standard- kalibrierung	ja	
gnesium	8	ICP_AES	OK	0,5	Wärmeblock	Königswasser		ja	1
	9	Hausmethode - lonenchromatographie	ja	0,6 g	wässrige Extraktion	H2O/HNO3	lineare Regression	ja	
	10	ICP-MS		1 g	erhitzen	\//accar	Externer Standardreihe	nein	
	1 1	§ 64 LFGB L 00.00-144, ICP-OES: 2019-07	GM 200; Glasbehälter + Titanmesser	0,2 g	Mikrowelle		extern	ja	
	1.7	ASU L 00.00-19/3, 2004-07	kompletter Beutelinhalt, IKA Analysenmühle	0,5 g	Mikrowelle	Salpetersäure, Wasserstoffperoxid	externe Kalibrierung/ Elementstandardlösun gen rückführbar auf NIST	ja	

Parameter	Teil- nehmer	Methodenangabe, wie in Prüfbericht / Norm / Literatur	Homogenisierung	Einwaage	Aufschluss: Methode	Aufschluss: Lösung	Kalibrierverfahren / Referenzmaterial	Methode akkreditiert nach ISO/IEC 17025	Sonstige Hinweise
	1	AA53v21,ICP-MS			ASU 00.00-19/1			ja	
	2	Quantitative Analyse ICP-MS	keine	0.2g	Mikorwellendruckaufsc hluss	HNO3 (3mL), HCl (0.5mL)	externe Kalibration und Referenzwasser	ja	
	3	DIN 38 406 - E33-1 + ASU L 00.00-19/2	ja	0,25g	Mikrowellendruckaufsc hluss gem. BLS SOP 3.001	5ml HNO3 65% + 1ml H2O2 30%	Linear	ja	-
	4	ICP-OES mit Säureaufschluss		Probe 14: 3.0791 9; Probe 16: 3.0934 g			Spex Certiprep	ja	
	5	MI_032_2021_Rev.2	ja	0,1g	Ultrawave	HNO3 + H2O2	Ultra IQC-026	nein	
	6	ICP-OES	Durchmischung	0,2 g	Mikrowelle	HNO3	extern	ja	
Mn – Man- gan / Man- ganese	7	ASU L 00.00-144 (modifiziert) 2019-07	nein	(I) 5 a	Mikrowellen- Hochdruck-Aufschluss	1mL H2O + 2mL HNO3 + 1mL H2O2 + 1mL HCl	externe Standard- kalibrierung	ja	
	8	ICP_AES	OK	0,5	Wärmeblock	HNO3 +H2O3		ja	/
	9	Hausmethode - lonenchromatographie	ja	0,6 g	wässrige Extraktion	H2O/HNO3	lineare Regression	ja	
	10	ICP-MS		1 g	erhitzen	Wasser	Externer Standardreihe	nein	
	11	§ 64 LFGB L 00.00-144, ICP-OES: 2019-07	GM 200; Glasbehälter + Titanmesser	0,2 g	Mikrowelle	HNO3	extern	ja	
		ASU L 00.00-19/3, 2004-07	kompletter Beutelinhalt, IKA Analysenmühle	0,5 g	Mikrowelle	Salpetersäure, Wasserstoffperoxid	externe Kalibrierung/ Elementstandardlösun gen rückführbar auf NIST	ja	

Parameter	Teil- nehmer	Methodenangabe, wie in Prüfbericht / Norm / Literatur	Homogenisierung	Einwaage	Aufschluss: Methode	Aufschluss: Lösung	Kalibrierverfahren / Referenzmaterial	Methode akkreditiert nach ISO/IEC 17025	Sonstige Hinweise
	1	AA53v21,ICP-MS			ASU 00.00-19/1			ja	
	2	Quantitative Analyse ICP- MS	keine	0.2g	Mikorwellendruckaufsc hluss	HNO3 (3mL), HCl (0.5mL)	externe Kalibration und Referenzwasser	ja	
	3	DIN EN ISO 15586 + ASU L 00.00-19/3	ja	0,25g	Mikrowellendruckaufsc hluss gem. BLS SOP 3.001	5ml HNO3 65% + 1ml H2O2 30%	Linear	ja	-
	4	ICP-OES mit Säureaufschluss		Probe 14: 3.0791 9; Probe 16: 3.0934 g			Spex Certiprep	ja	
	5	MI_032_2021_Rev.2	ja	0,1g	Ultrawave	HNO3 + H2O2	Ultra IQC-026	nein	
Mo – Mo-	6								
lybdän / Molybde- num	7	ASU L 00.00-144 (modifiziert) 2019-07	nein	0,5 g	Mikrowellen- Hochdruck-Aufschluss	1mL H2O + 2mL HNO3 + 1mL H2O2 + 1mL HCl	externe Standard- kalibrierung	ja	
	8	ICP_AES	OK	0,5	Wärmeblock	HNO3 +H2O2		nein	/
	9	ICP-MS	ja	0,4 g	Mikrowelle	H2O/HNO3/HCI	lineare Regression	ja	
	10	ICP-MS		1 g	erhitzen	Wasser	Externer Standardreihe	nein	
	11	DIN EN 15763, mod., ICP- MS: 2010-04	GM 200; Glasbehälter + Titanmesser	0,2 g	Mikrowelle	HNO3	extern	ja	
	12	ASU L 00.00-19/3, 2004-07	kompletter Beutelinhalt, IKA Analysenmühle	0,5 g	Mikrowelle	Salpetersäure, Wasserstoffperoxid	externe Kalibrierung/ Elementstandardlösun gen rückführbar auf NIST	ja	

Parameter	Teil- nehmer	Methodenangabe, wie in Prüfbericht / Norm / Literatur	Homogenisierung	Einwaage	Aufschluss: Methode	Aufschluss: Lösung	Kalibrierverfahren / Referenzmaterial	Methode akkreditiert nach ISO/IEC 17025	Sonstige Hinweise
	1	AA53v21,ICP-MS			ASU 00.00-19/1			ja	
	2	Quantitative Analyse ICP- MS	keine	0.2g	Mikorwellendruckaufsc hluss	HNO3 (3mL), HCl (0.5mL)	externe Kalibration und Referenzwasser	nein	
	3	-	-	-	-	-	-	-	-
	4	ICP-OES mit Säureaufschluss		Probe 14: 3.0791 9; Probe 16: 3.0934 g			Spex Certiprep	ja	
	5	MI_032_2021_Rev.2	ja	0,1g	Ultrawave	HNO3 + H2O2	Ultra ICP-015	nein	
P - Phos-	6	ICP-OES	Durchmischung	0,2 g	Mikrowelle	HNO3	extern	ja	
phor /	7								
Phospho-	8	ICP_AES	OK	0,5	Wärmeblock	HNO3 +H2O2		ja	1
rus	9	ICP-OES	ja	0,4 g	Mikrowelle	H2O/HNO3/HCI	lineare Regression	ja	
	10	ICP-MS		1 g	erhitzen	Wasser	Externer Standardreihe	nein	
	11	§ 64 LFGB L 00.00-144, ICP-OES: 2019-07	GM 200; Glasbehälter + Titanmesser	0,2 g	Mikrowelle	HNO3	extern	ja	
	12	ASU L 00.00-19/3, 2004-07	kompletter Beutelinhalt, IKA Analysenmühle	0,5 g	Mikrowelle	Salpetersäure, Wasserstoffperoxid	externe Kalibrierung/ Elementstandardlösun gen rückführbar auf NIST	ja	

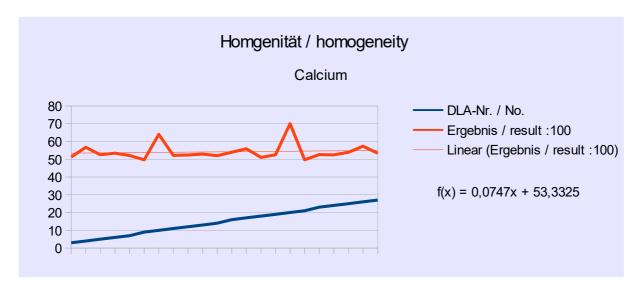
Parameter	Teil- nehmer	Methodenangabe, wie in Prüfbericht / Norm / Literatur	Homogenisierung	Einwaage	Aufschluss: Methode	Aufschluss: Lösung	Kalibrierverfahren / Referenzmaterial	Methode akkreditiert nach ISO/IEC 17025	Sonstige Hinweise
	1	AA53v21,ICP-MS			ASU 00.00-19/1			ja	
	2	Quantitative Analyse ICP-MS	keine	0.2g	Mikorwellendruckaufsc hluss	HNO3 (3mL), HCl (0.5mL)	externe Kalibration und Referenzwasser	ja	
	3	-	-	-	-	-	-	-	-
	4	ICP-OES mit Säureaufschluss		Probe 14: 3.0791 9; Probe 16: 3.0934 g			Spex Certiprep	ja	
	5	MI_032_2021_Rev.2	ja	0,1g	Ultrawave	HNO3 + H2O2	Ultra IQC-026	nein	
	6								
Se – Selen / Selenium	7	ASU L 00.00-144 (modifiziert) 2019-07	nein	0,5 g	Mikrowellen- Hochdruck-Aufschluss	HNO3 + 1mI H2O2 +	externe Standard- kalibrierung	ja	
	8	ICP MS	OK	0,5	Wärmeblock	HNO3 +H2O2		ja	/
	9	ICP-MS	ja	0,2 g	Mikrowelle	H2O/HNO3/H2O2	lineare Regression	ja	
	10	ICP-MS		1 g	erhitzen	\//accer	Externer Standardreihe	nein	
	11	DIN EN 15763, mod., ICP- MS: 2010-04	GM 200; Glasbehälter + Titanmesser	0,2 g	Mikrowelle	HNO3	extern	ja	
	12	ASU L 00.00-19/3, 2004-07	kompletter Beutelinhalt, IKA Analysenmühle	0,5 g	Mikrowelle	Salpetersäure, Wasserstoffperoxid	externe Kalibrierung/ Elementstandardlösun gen rückführbar auf NIST	ja	

Parameter	Teil- nehmer	Methodenangabe, wie in Prüfbericht / Norm / Literatur	Homogenisierung	Einwaage	Aufschluss: Methode	Aufschluss: Lösung	Kalibrierverfahren / Referenzmaterial	Methode akkreditiert nach ISO/IEC 17025	Sonstige Hinweise
	1	AA53v21,ICP-MS			ASU 00.00-19/1			ja	
	2	Quantitative Analyse ICP-MS	keine	0.2g	Mikorwellendruckaufsc hluss	HNO3 (3mL), HCl (0.5mL)	externe Kalibration und Referenzwasser	ja	
	۱ ۲	DIN 38 406 - E8 + ASU L 00.00-19/2	ja	0,25g	Mikrowellendruckaufsc hluss gem. BLS SOP 3.001	5ml HNO3 65% + 1ml H2O2 30%	Linear	ja	-
	4	ICP-OES mit Säureaufschluss		Probe 14: 3.0791 9; Probe 16: 3.0934 g			Spex Certiprep	ja	
	5	MI_032_2021_Rev.2	ja	0,1g	Ultrawave	HNO3 + H2O2	Ultra IQC-026	nein	
	6	ICP-OES	Durchmischung	0,2 g	Mikrowelle	HNO3	extern	ja	
Zn – Zink / Zinc	7	ASU L 00.00-144 (modifiziert) 2019-07	nein	0,5 g	Mikrowellen- Hochdruck-Aufschluss	1mL H2O + 2mL HNO3 + 1mL H2O2 + 1mL HCl	externe Standard- kalibrierung	ja	
	8	ICP_AES	OK	0,5	Wärmeblock	HNO3 +H2O2		ja	/
	9	Hausmethode - lonenchromatographie	ja	0,6 g	wässrige Extraktion	H2O/HNO3	lineare Regression	ja	
	10	ICP-MS		1 g	erhitzen	Wasser	Externer Standardreihe	nein	
	11	DIN EN 15763, mod., ICP- MS: 2010-04	GM 200; Glasbehälter + Titanmesser	0,2 g	Mikrowelle	HNO3	extern	ja	
	12	ASU L 00.00-19/3, 2004-07	kompletter Beutelinhalt, IKA Analysenmühle	0,5 g	Mikrowelle	Salpetersäure, Wasserstoffperoxid	externe Kalibrierung/ Elementstandardlösun gen rückführbar auf NIST	ja	

5.2 Homogenität

5.2.1 Homogenitätsuntersuchung der abgefüllten LVU-Proben

Homogenitätsprüfung anhand der Bestimmung von Kupfer mittels ICP-MS(DIN EN ISO 17294-2):


11	
KII	ntei

Wiederholmessungen	mg/kg
1	450
2	470
3	480
4	460
5	450
6	460
7	450
8	450

Allgemeiner Mittelw ert 459
Wiederholstandardabw eichung 11,3 2,45%

5.2.2 Trendlinienfunktion der Teilnehmerergebnisse

Aus der Gegenüberstellung der aufsteigenden Probennummern und den Messergebnissen der Teilnehmer lässt sich die Homogenität des chronologisch abgefüllten LVU-Materials zur Information darstellen:

Abb./Fig. 25:

Trendfunktion Probennummern vs. Ergebnisse: Calcium (1/100 dargestellt) trend line function sample number vs. results: calcium (1/100 shown)

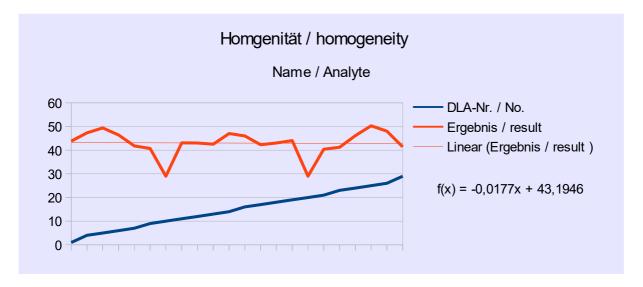


Abb./Fig. 26: Trendfunktion Probennummern vs. Ergebnisse: Kupfer trend line function sample number vs. results: copper

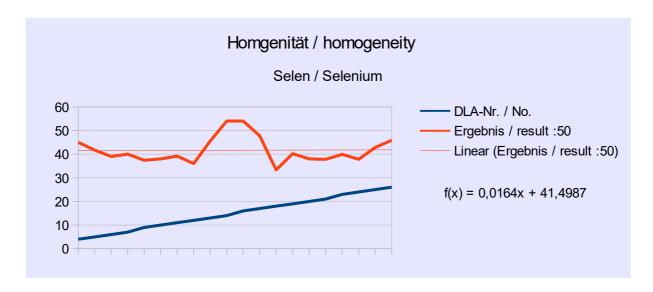
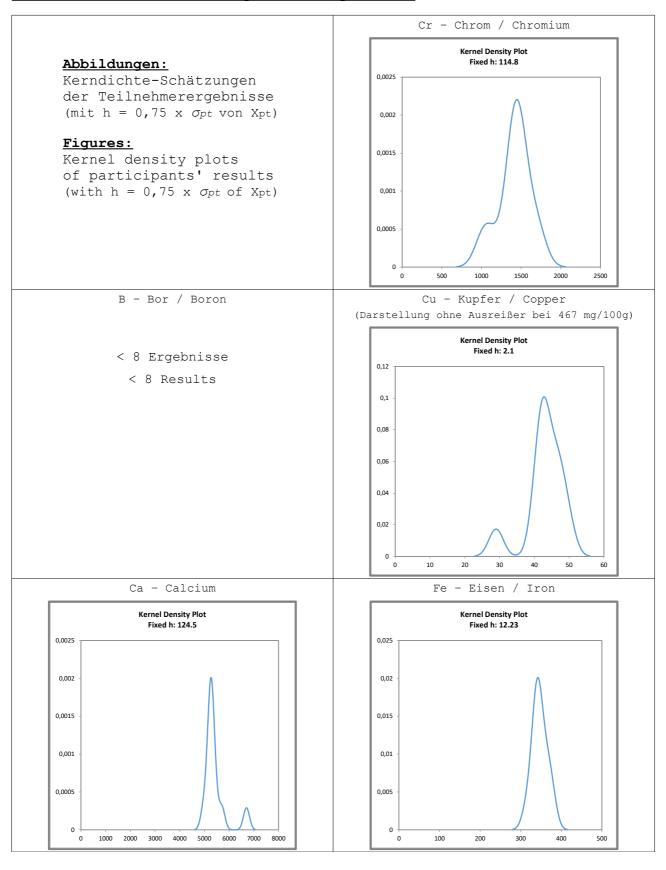
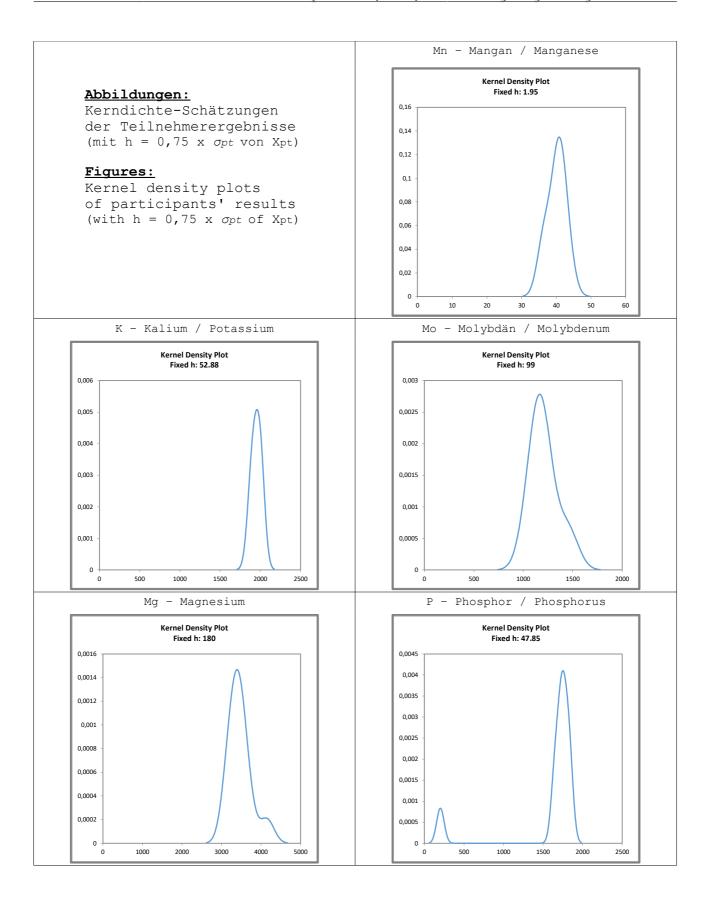
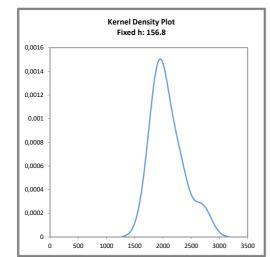
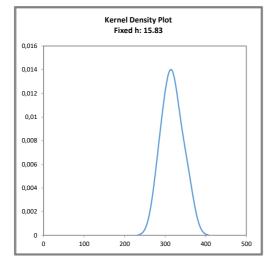




Abb./Fig. 27: Trendfunktion Probennummern vs. Ergebnisse: Selen (1/50 dargestellt) trend line function sample number vs. results: selenium (1/50 shown)

5.3 Kerndichte-Verteilungen der Ergebnisse


Abbildungen:

Kerndichte-Schätzungen der Teilnehmerergebnisse (mit $h = 0,75 \times \sigma_{pt} \text{ von } X_{pt}$)


Figures:

Kernel density plots of participants' results (with h = 0,75 x σpt of Xpt)

Se - Selen / Selenium

Zn - Zink / Zinc

5.4 Informationen zur Eignungsprüfung (EP)

Vor der LVU wurden den Teilnehmern im Proben-Anschreiben folgende Informationen mitgeteilt:

EP-Nummer	DLA ptSU03-2021
EP-Name	Nahrungsergänzungsmittel II: B, Ca, Cr, Cu, Fe, K, Mg, Mn, Mo, P, Se, Zn
Probenmatrix*	Proben I + II: Multivitamin- & Mineralstofftabletten- bzwkapselpulver (ohne Kapselhülle) / Zutaten: Maltodextrin, Mineralstoff-Verbindungen und Vitamine sowie weitere technologische Zusatzstoffe
Probenzahl und Probenmenge	2 identische Proben I + II: je 10 g
Lagerungsinformation	Proben I + II: Raumtemperatur
Verwendungszweck	Ausschließlich für Laboruntersuchungen (Qualitätskontrollproben)
Parameter	quantitativ: B, Ca, Cr, Cu, Fe, K, Mg, Mn, Mo, P, Se und Zn
Untersuchungsmethoden	Methode ist freigestellt
Hinweise zur Analyse	Die Untersuchung der Eignungsprüfung soll entsprechend einer laborüblichen Routineanalyse vorgenommen werden. Generell empfehlen wir vor der Analyse, insbesondere bei kleinen Analyseeinwaagen, eine repräsentative Probenmenge entsprechend guter Laborpraxis zu homogenisieren.
Ergebnisangabe	Es werden die Einzelergebnisse für Probe I und II sowie die Mittelwerte als Endergebnisse, berechnet aus der Doppelbestimmung (Probe I und II), in die Ergebnisabgabe-Datei eingetragen. Die Wiederfindung, wenn durchgeführt, ist in die Rechnung mit einzubeziehen.
Einheiten	mg/100g und μg/100g (siehe Ergebnistabelle)
Anzahl von signifikanten Stellen	Mindestens 2
Weitere Angaben:	Zur Information ist anzugeben: - Datum der Analyse - DLA-Nr. der Probe I und II - Bestimmungsgrenze - Angabe inkl. Wiederfindung - Wiederfindung wurde mit gleicher Matrix bestimmt. - Methode ist akkreditiert
Ergebnisabgabe	Die Ergebnisabgabe-Datei wird per eMail übermittelt an: pt@dla-lvu.de
Letzter Abgabetermin	Spätestens 03. September 2021
Auswertebericht	Der Auswertebericht wird voraussichtlich 6 Wochen nach Abgabetermin der Ergebnisse fertiggestellt und per eMail als PDF-Datei zugesandt.
Koordinator und Ansprechpartner der EP	Dr. Matthias Besler-Scharf

^{*} Die Kontrolle der Mischungshomogentitä wird von DLA durchgeführt. Die Prüfung der Gehalte, Homogenität und Stabilität von EP-Parametern wird von DLA im Unterauftrag vergeben.

6. Verzeichnis der Teilnehmer in alphabetischer Reihenfolge

Teilnehmer / Participant	Ort / Town	Land / Country
		Deutschland
		ITALIEN
		Deutschland
		Deutschland
		USA
		Deutschland
		SCHWEIZ
		BELGIEN
		Deutschland

[Die Adressdaten der Teilnehmer wurden für die allgemeine Veröffentlichung des Auswerte-Berichts nicht angegeben.]

[The address data of the participants were deleted for publication of the evaluation report.]

7. Verzeichnis relevanter Literatur

- 1. DIN EN ISO/IEC 17025:2005; Allgemeine Anforderungen an die Kompetenz von Prüf- und Kalibrierlaboratorien / General requirements for the competence of testing and calibration laboratories
- 2. DIN EN ISO/IEC 17043:2010; Konformitätsbewertung Allgemeine Anforderungen an Eignungsprüfungen / Conformity assessment - General requirements for proficiency
- 3. ISO 13528:2015 & DIN ISO 13528:2009; Statistische Verfahren für Eignungsprüfungen durch Ringversuche / Statistical methods for use in proficiency testing by interlaboratory comparisons
- 4. ASU §64 LFGB: Planung und statistische Auswertung von Ringversuchen zur Methodenvalidierung / DIN ISO 5725 series part 1, 2 and 6 Accuracy (trueness and precision) of measurement methods and results
- 5. Verordnung / Regulation 882/2004/EU; Verordnung über über amtliche Kontrollen zur Überprüfung der Einhaltung des Lebensmittel- und Futtermittelrechts sowie der Bestimmungen über Tiergesundheit und Tierschutz / Regulation on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules
- 6. Evaluation of analytical methods used for regulation of food and drugs; W. Horwitz; Analytical Chemistry, 54, 67-76 (1982)
- 7. The International Harmonised Protocol for the Proficiency Testing of Ananlytical Laboratories ; J.AOAC Int., 76(4), 926 - 940 (1993)
- 8. A Horwitz-like funktion describes precision in proficiency test; M. Thompson, P.J. Lowthian; Analyst, 120, 271-272 (1995)
- 9. Protocol for the design, conduct and interpretation of method performance studies; W. Horwitz; Pure & Applied Chemistry, 67, 331-343 (1995)
- 10. Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing; M. Thompson; Analyst, 125, 385-386 (2000)
- 11. The International Harmonised Protocol for the Proficiency Testing of Analytical Chemistry Laboratories; Pure Appl Chem, 78, 145 - 196 (2006)
- 12.AMC Kernel Density Representing data distributions with kernel density estimates, amc technical brief, Editor M Thompson, Analytical Methods Committee, AMCTB No 4, Revised March 2006 and Excel Add-in Kernel.xla 1.0e by Royal Society of Che-
- 13.EURACHEM/CITAC Leitfaden, Ermittlung der Messunsicherheit bei analytischen Messungen (2003); Quantifying Uncertainty in Analytical Measurement (1999)
- 14.GMP+ Feed Certification scheme, Module: Feed Safety Assurance, chapter 5.7 Checking procedure for the process accuracy of compound feed with micro tracers in GMP+ BA2 Control of residues, Version: 1st of January 2015 GMP+ International B.V.
- 15.MTSE SOP No. 010.01 (2014): Quantitative measurement of mixing uniformity and carry-over in powder mixtures with the rotary detector technique, MTSE Micro Tracers Services Europe GmbH
- 16. Homogeneity and stability of reference materials; Linsinger et al.; Accred Qual Assur, 6, 20-25 (2001)
- 17.AOAC Official Methods of Analysis: Guidelines for Standard Method Performance Requirements, Appendix F, p. 2, AOAC Int (2016)
- 18.ASU §64 L 00.00-157 (2016-2): Bestimmung von Aluminium in Lebensmitteln mit der Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS)
- 19.ASU §64 L 00.00-158 (2016-2): Bestimmung von Aluminium in Lebensmitteln mit der optischen Emmissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP-OES)
- 20.ASU §64 L 00.00-135 (2011-01) / DIN EN 15763:2010: Bestimmung von Arsen, Cadmium, Quecksilber und Blei in Lebensmitteln mit ICP-MS nach Druckaufschluss / Foodstuffs. Determination of trace elements. Determination of arsenic, cadmium, mercury and lead in foodstuffs by inductively coupled plasma mass spectrometry (ICPMS) after pressure digestion
- 21.ASU §64 L 00.00-19/2: Bestimmung von Eisen, Kupfer, Mangan und Zink mit der Atomabsorptionsspektrometrie (AAS) in der Flamme
- 22.ASU §64 L 00.00-19/3 / DIN EN 14083: Bestimmung von Blei, Cadmium, Chrom und Molybdän mit Graphitofen-Atomabsorptionsspektrometrie (GFAAS) nach Druckaufschluss / Foodstuffs. Determination of trace elements. Determination of lead, cadmium, chromium and molybdenum by graphite furnace atomic absorption spectrometry (GFAAS) after pressure digestion
- 23.ASU §64 L 00.00-19/5: Bestimmung von Selen mit der Atomabsorptionsspektrometrie (AAS) -Hydridtechnik

- 24.ASU §64 L 00.00-144 : Bestimmung der Mineralstoffe Ca, K, Mg, Na, P und S sowie der Spurenelemente Fe, Cu, Mn und Zn in Lebensmitteln mit ICP-OES
- 25.ASU §64 L 00.00-93 / DIN EN 15111: Bestimmung von Iod in Lebensmitteln ICP-MS-Verfahren / Foodstuffs. Determination of trace elements. Determination of iodine by ICP-MS (inductively coupled plasma mass spectrometry)
- 26.ASU §64 L 00.00-127 / EN 15764: Bestimmung von Zinn in Lebensmitteln mit der Flammen- und Graphitrohr-Atomabsorptionsspektrometrie (GFAAS) nach Druckaufschluss / Foodstuffs. Determination of trace elements. Determination of tin by flame and graphite furnace atomic absorption spectrometry (FAAS and GFAAS) after pressure digestion
- 27.ASU §64 L 00.00-128 / DIN EN 15765: Bestimmung Zinn in Lebensmitteln mit der Massensprektrometrie mit induktiv gekoppeltem Plasma (ICP-MS) nach Druckaufschluss / Foodstuffs. Determination of trace elements. Determination of tin by inductively coupled plasma mass spectrometry (ICPMS) after pressure digestion
- 28.ASU §64 L 31.00-10: Bestimmung der Gehalte an Natrium, Kalium, Calcium und Magnesium in Frucht- und Gemüsesäften Atomabsorptionsspektrometrisches Verfahren (AAS)

DLA ptSU03 (2021) - Nahrungsergänzungsmittel II

Von 13 Teilnehmern haben 12 Ergebnisse eingereicht. Die Auswertung der Parameter B, Ca, Cr, Cu, Fe, K, Mg, Mn, Mo, P, Se und Zn in Kapsel-/Tablettenpulver erfolgte mit der Zielstandardabweichung des allgemeinen Modells nach Horwitz bzw. nach der eines Versuchs zur Präzision. Es lagen 73% bis 100% der Ergebnisse der Teilnehmer im Zielbereich. Details zu den einzelnen Parametern sind dem Auswertebericht zu entnehmen.

3 Teilnehmer hatten ihren Sitz im Europäischen Ausland (Italien, Schweiz, Belgien) und ein Teilnehmer in den USA.